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Abstract. Dirichlet type problem in a bounded domain for the system of linear elliptic equations of
second order, which degenerate into first order system at a line crossing the domain, is studied. The
existence and uniqueness of a solution of this problem in the Hölder class of functions are proved
without any additional condition at line of degeneracy. The only requirement is that the solution is
bounded in the considered domain.
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1 Introduction

The boundary value problems for elliptic equations including equations with degeneracy
are closely related with non-local problems for mixed type equations, which are elliptic
in a part of the considered domain [1]. In such case, there arise usually the question
of well-posedness of boundary value problems in the elliptic part. To be more specific,
it is very important to formulate properly the conditions for the solution on the part of
a boundary, where treated equation change its type. It is well known that sometimes a part
of the boundary on which elliptic equation has some degeneracy must be free from any
boundary value condition in order to have well possed problem [2, 3]. It will be observed
that usually there is stated the requirement for the solution of such problems to be bounded
in considered domain.

This article treats of a boundary value problem for elliptic system of PDE, which is
degenerate at a line crossing the domain. Specifically, the order of the considered system
degenerate at this line. One can approach the degeneracy line as a part of the boundary
of the domain in which this system is studied. The aim of the article is to consider the
Dirichlet type problem when the degeneracy line must be free from boundary conditions
except the boundedness condition. This problem is some generalization of the Dirichlet
type problems for elliptic systems with degeneracy at an inner point of considered domain
[4–7].
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2 Statement of the problem

Let D ∈ Rn+1, n > 1, ∂D = Γ ∈ C2,α, 0 < α < 1, be a bounded domain of points
x = (x0, x

′), x′ = (x1, . . . , xn), containing the cylinder CR = {(x0, x′): |x′| < R,
0 < x0 < h}, both bases of which lie on Γ . Thus, line x′ = 0 is the axis of cylinder CR
and it crossing the domain D and intersecting with Γ by two points O(0, 0) ∈ Rn+1 and
P (h, 0) ∈ Rn+1.

We consider the system of equations

Lu :=

n∑
i,j=0

Aij(x)uxixj +

n∑
i=0

Bi(x)uxi + C(x)u = F (x), x ∈ D, (1)

assuming that the matrix Aij = diag(a
(1)
ij1, . . . , a

(m)
ij ), Bi = diag(b

(1)
i1 , . . . , b

(m)
i ),

C = (ckl), k, l = 1,m, and right-hand side F = (f1, . . . , fm) are bounded in D and
Aij = Aji, i, j = 1, n.

Let r = |x′|. We shall use the following denotations:

Dδ = D \ {x: r 6 δ}, Γδ = Γ \ {x: r 6 δ}, δ ∈ [0, R],

Cρ = {x: r < ρ, 0 < x0 < h}, C0
ρ = Cρ \ {r = 0},

Qρ = {x: r = ρ, 0 < x0 < h}.

Further, we denote by Qρ the lateral surface of cylinder Cρ, by Ω and Ωδ the projections
of the respective domains D and Dδ onto the plane x0 = 0, and by S the boundary of
domain Ω. Let us note that, in such case, D0 = D \ {x′ = 0}, Ω0 = Ω \ {x′ = 0} and
Γ0 = Γ \ {O ∪ P}.

By | · |l;D and | · |l,α;D we shall denote the norms in the corresponding Banach spaces
Cl(D) and Cl;α(D), where l > 0 is an integer.

We assume that following conditions are fulfilled:
1. There exist continuous in Ω functions ai, i = 1, 2, such that 0 < a1(x′) 6 a2(x′) in
Ω0 ∪ S, limx′→0 a2(x′) = 0, and the relations

a1(x′)|ξ|2 6
n∑

i,j=0

a
(k)
ij (x)ξiξj 6 a2(x′)|ξ|2, k = 1,m, (2)

hold everywhere in D for each ξ = (ξ0, . . . , ξn) ∈ Rn+1.

2. The inequalities

ck(x) := ckk(x) +
∑
l 6=k

∣∣ckl(x)
∣∣ < 0, k = 1,m, (3)

hold for each x ∈ D0.

Therefore, according to (2), system (1) is elliptic in D0 and its order degenerate at the
line x′ = 0.
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Let us introduce the class of vector-functions

C2,α
loc (D) :=

{
u = (u1, . . . , un): u ∈ C2,α(Dδ) ∀δ > 0, |u| <∞ in D0

}
.

We study the following Dirichlet type problem:

Lu = F in D0, (4)
u|Γ0 = g, (5)

where u ∈ C2,α
loc (D0) and g = (g1, . . . , gm) is the given vector-function.

In the case where the operator L degenerates at line x′ = 0 into ultraparabolic one,
problem (4), (5) is discussed in [8, 9].

3 Auxilaries

Here we discuss the properties of operator L that will imply the uniqueness of the solution
of problem (4), (5).

Lemma 1. Let D′ ⊂ D be any subdomain lying outside of the line x′ = 0, let u = (u1,
. . . , um) ∈ C2(D′)∩C(D′) be a solution of system (1), and let there exists supD0

|fi/ci|
for every i = 1,m. If condition (3) is fulfilled, then the estimate

|uj |0;D′ 6 max
16i6m

{
max
∂D′
|ui|, sup

D0

∣∣∣∣fici
∣∣∣∣}, j = 1,m, (6)

holds.1

Proof. It is easily seen that |uj |0;D′ > max∂D′ |uj |, j = 1,m. If equality

|uj |0;D′ = max
∂D′
|uj | (7)

holds for each j = 1,m, then estimate (6) is evident.
Assume that some components uj of solution u do not satisfy (7). Let, without a loose

of generality, those are first m0 (m0 6 m) components u1, . . . , um0 and let the rest
components ui, i = m0 + 1,m, satisfy (7). In such a case, all |uj |, j = 1,m0, attain its
positive maximum at an inner point xj ∈ D′, correspondingly. Denote by ū the largest
one of the number set {|uj(xj)|}m0

j=1. If

ū 6 max
∂D′
|ui|, i = m0 + 1,m, (8)

then according to the choice of ū and due to the assumption

|uj |0;D′ = max
∂D′
|uj |, j = m0 + 1,m, (9)

1If m = 1, then estimate (6) coinsides with well known maximum principle for the single elliptic equations
[10, 11].
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we get that

|uj |0;D′ 6 max
m0+16i6m

|ui|0;D′ = max
m0+16i6m

{
max
∂D′
|ui|
}

6 max
16i6m

{
max
∂D′
|ui|
}
, j = 1,m0.

This jointly with (9) yields the inequality

|uj |0;D′ 6 max
16i6m

{
max
∂D′
|ui|
}
, j = 1,m. (10)

Therefore, estimate (6) under condition (8) holds.
Let us assume that ū does not satisfy (8), i.e.

ū > max
∂D′
|ui|, i = m0 + 1,m. (11)

We shall show that then assumption (11) either implies the estimate

ū 6 max
16i6m

{
sup
D0

∣∣∣∣fici
∣∣∣∣} (12)

or produces the contradiction to itself. The latter case will indicate that (11) is incorrect,
i.e. condition (8) is valid. Therefore, there holds relation (10), which yields estimate (6).

Let the value ū be attain by the kth component uk of solution u, i.e. ū = |uk(xk)|,
1 6 k 6 m0. Note that∣∣uk(xk)∣∣ > ∣∣ul(xl)∣∣ > ∣∣ul(x)

∣∣ ∀x ∈ D′, l = 1,m0,

because of the choice of ū and∣∣uk(xk)∣∣ > ∣∣ul(x)
∣∣ ∀x ∈ D′, l = m0 + 1,m,

in accordance with assumption (11), i.e.

ū =
∣∣uk(xk)∣∣ > ∣∣ul(x)

∣∣, l = 1,m, (13)

everywhere in D′ and

ū =
∣∣uk(xk)∣∣ > ∣∣ul(xk)∣∣, l = 1,m, (14)

particularly. Moreover, according to (13), it follows the inequality

|uj |0;D′ 6 ū (15)

holding for each j = 1,m.
Let ū = uk(xk) > 0. Then xk is the maximum point of function uk, consequently,

∂uk
∂xi

∣∣∣∣
x=xk

= 0, i = 1, n.
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Moreover, according to condition

n∑
i,j=0

a
(k)
ij (x)ξiξj > 0, x ∈ D′ ⊂ D0,

(see (2)) the inequality
n∑

i,j=0

a
(k)
ij (x)

∂2uk
∂xi∂xj

∣∣∣∣
x=xk

6 0

holds. Therefore, it follows from kth equation of system (1) the inequality

uk
(
xk
)
ckk
(
xk
)

+
∑
l 6=k

ul
(
xk
)
ckl
(
xk
)
> fk

(
xk
)
. (16)

Thereby, in view of both (3) and (14), we get that

uk
(
xk
)
ckk
(
xk
)

+
∑
l 6=k

ul
(
xk
)
ckl
(
xk
)

6 uk
(
xk
)
ckk
(
xk
)

+
∑
l 6=k

∣∣ul(xk)∣∣∣∣ckl(xk)∣∣ 6 uk
(
xk
)(
ckk
(
xk
)

+
∑
l 6=k

∣∣ckl(xk)∣∣)
= ūck

(
xk
)
.

Hence, taking into account (16), we obtain that

ūck
(
xk
)
> fk

(
xk
)
. (17)

If fk(xk) > 0, then this inequality does not hold because of condition (3), i.e. we get
above-mentioned contradiction. So, in this case, estimate (6) holds.

If fk(xk) < 0, then we obtain from (17) that

ū 6
fk(xk)

ck(xk)
6 sup
x∈D0

∣∣∣∣fk(x)

ck(x)

∣∣∣∣ 6 max
16i6m

{
sup
x∈D0

∣∣∣∣fi(x)

ci(x)

∣∣∣∣}.
This jointly with (15) yields the estimate

|uj |0;D′ 6 max
16i6m

{
sup
x∈D0

∣∣∣∣fi(x)

ci(x)

∣∣∣∣}, j = 1,m, (18)

hence, estimate (6), too.
Let ū = uk(xk) < 0. Then xk is the minimum point of function uk. In this case, we

get by repeating of the above-made steps the inequality

ū > −fk(xk)

ck(xk)

instead of (17). If fk(xk) > 0, then this inequality implies (18). If fk(xk) 6 0, then there
holds (10) doe to contradiction. Both (10) and (18) yield estimate (6), evidently.
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Let u = (u1, . . . , um) ∈ C2(D′) ∩ C(D′) be a solution of Dirichlet problem

Lu = F in D′, u|∂D′ = g, (19)

where function g = (g1, . . . , gm) is continuous on ∂D′. If condition (3) is fulfilled, then
we get from Lemma 1 the estimate

|uj |0;D′ 6 max
16i6m

{
max
∂D′
|gi|, sup

D0

∣∣∣∣fici
∣∣∣∣}, j = 1,m.

Hence, u ≡ 0 in D′ if F ≡ 0 in D′ and g ≡ 0 on ∂D′. Thus, Lemma 1 implies the
following corollary.

Corollary 1. If condition (3) holds, then the solution of Dirichlet problem (19) is unique
in the class C2(D′) ∩ C(D′).

Introduce the operator

L(k)
0 :=

n∑
i,j=1

a
(k)
ij (x)

∂2

∂xi∂xj
+

n∑
i=1

b
(k)
i (x)

∂

∂xi
.

Lemma 2. Let u = (u1, . . . , um) ∈ C2(D0) ∩ C(D0 ∪ Γ0) be a solution of equation
Lu = 0 and let there exists a positive in Ω0 ∪ S function ω satisfying the following
conditions:

ω(x′)→ +∞ uniformly as x′ → 0, (20)(
L(k)
0 + ck(x)

)
ω(x′) < 0 in D0, k = 1,m. (21)

If solution u is uniformly bounded in D0, equal to zero on Γ0 and there holds condi-
tion (3), then u ≡ 0 in D0.

Proof. Introduce the vector-function v = (v1, . . . , vn) by the formula

u(x) = ω(x′)v(x). (22)

Let ε > 0 be arbitrary. Since u is uniformly bounded in D0, due to (20), there exits
cylinder Crε such that

|vi| = ω−1|ui| < ε in C0
rε ∪ Γrε , i = 1,m. (23)

We shall show that those inequalities hold also in Drε .
Putting (22) into equation Lu = 0, we obtain that v satisfies the system of equations

L̃v :=

n∑
i,j=0

Aij(x)vxixj +

n∑
i=0

B̃i(x)vxi + C̃(x)v = 0, (24)
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where matrices B̃i = diag(b̃
(1)
i , . . . , b̃

(m)
i ) and C̃ = (c̃kl), k, l = 1,m, are defined by

b̃
(k)
i (x) = b

(k)
i (x) + 2

n∑
j=1

a
(k)
ij (x)ωxj (x

′), k = 1,m,

and by

c̃kl(x) =

{
ω−1(x′)L(k)

0 ω(x′) + ckk(x) if k = l,

ckl(x) if k 6= l,

correspondingly.
So, we have

c̃k(x) := c̃kk(x) +
∑
l 6=k

∣∣c̃kl(x)
∣∣

= ω−1(x′)L(k)
0 ω(x′) + ck(x) < 0 in D0, k = 1,m,

because of (21). Therefore, in accordance with Lemma 1, we get for solution v = (v1,
. . . , vn) of equation (23) the estimate

|vj |0;Drε 6 max
16i6m

{
max
∂Drε

|vi|
}
, j = 1,m, (25)

where ∂Drε = Γrε ∪Qrε . Note that v|Γrε = 0 due to assumption of this lemma and due
to relation (22), and |vi| < ε, i = 1,m, on Qrε in view of (23), i.e. max∂Drε |vi| < ε,
i = 1,m. Therefore, inequalities |vi| < ε, i = 1,m, hold in Drε because of (25).
That jointly with (23) implies inequality |ui| < ω−1ε, i = 1,m, everywhere in D0.
Consequently, u ≡ 0 in D0, because ε is arbitrarily chosen.

Let us define the function ω(x′) by

ω(x′) = K − ln r, K = const,

assuming that K > ed, where d = maxx∈D r. Obviously, then ω(x′) > 0 for all x′ ∈
Ω0 ∪S and ω(x′)→ +∞, k = 1,m, uniformly as x′ → 0, i.e. condition (20) is fulfilled.

We shall indicate in Lemma 3 the sufficient conditions for operator L, under those the
defined above function ω(x′) satisfy condition (21).

Lemma 3. Let there exist

sup
D0

ck = −κ < 0, k = 1,m,

and let one of following conditions be fulfilled:
(a) a2(x′) = O(rµ) in Ω, where µ is any positive number, and there exist a number ν,

0 6 ν < µ, and cylinder C0
ρ ⊂ D0 such that

inf
C0
ρ

r−ν
n∑
i=1

xib
(k)
i (x) > 0, k = 1,m,

for some ρ > 0;
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(b) a2(x′) = O(rµ) in Ω with any µ > 2, b(k)i (x) = O(rν), k = 1,m, uniformly in D
with any ν > 1.

IfK is large enough, then the function ω(x′) = K−ln r satisfies inD0 condition (20).

Proof. By direct calculation we obtain that

L(k)
0 ω(x′) = r−2

(
2r−2

n∑
i,j=1

a
(k)
ij (x)xixj −

n∑
i=1

(
a
(k)
ii (x) + xib

(k)
i (x)

))
.

Note that, in view of (2), the inequalities

n∑
i,j=1

a
(k)
ij (x)xixj > a2

(
x′)r2,

n∑
i=1

a
(k)
ii (x) > 0, k = 1,m,

are valid for each x ∈ D0. Taking those in account, we get that

L(k)
0 ω

(
x′) < r−2ψk(x) ∀x ∈ D0, k = 1,m, (26)

where

ψk(x) = 2a2(x′)−
n∑
i=1

xib
(k)
i (x).

Besides that, we have according to assumption of lemma that

ck(x) 6 −κ in D0, k = 1,m.

Let condition (a) be fulfilled and let

inf
C0
ρ

r−ν
n∑
i=1

xib
(k)
i (x) = βk, k = 1,m.

Obviously, then the inequalities

ψk(x) 6 −βk + 2r−νa2(x′), k = 1,m,

hold for every x ∈ C0
ρ . Since a2(x′) = O(rµ) in Ω and µ > ν, we obtain that functions

ψk(x), k = 1,m, are negative in some cylinder C0
r0 ⊆ C

0
ρ with small enough r0, because

numbers βk, k = 1,m, are positive according to assumption of this lemma. Let

ψ0 = max
16k6m

{
sup
Dr0

|ψk|
}
.

Then it follows from (25) that

L(k)
0 ω(x′) 6 r−20 ψ0 in D0, k = 1,m.
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Thus, taking in account (27), we get that(
L(k)
0 + ck(x)

)
ω(x′) 6 r−20 ψ0 − κ(K − ln r) < 0

in D0 if K > κ−1r−20 ψ0 + ln d.
Now assume there holds conditions (b). Let γ = min{µ, ν}. In such a case, the

relations
ψk(x) = O

(
rγ+2

)
, k = 1,m,

hold uniformly in D0. Hence, the functions r−2ψk(x), k = 1,m, are uniformly bounded
in D0. Let us note that(

L(k)
0 + ck(x)

)
ω(x′) 6 r−2ψk(x) + κ(K − ln r) 6 κ− κK + κ ln r,

where
κ = max

16k6m

{
sup
D0

r−2|ψk|
}
.

If K > κ−1κ+ ln d, then it follows from here that(
L(k)
0 + ck(x)

)
ω(x′) < 0 in D0.

Hence, if K is suitably chosen, either the assumption (a) or the assumption (b) imply
inequality (21).

4 The existence and uniqueness of the solution of problem (4), (5)

We shall prove the existence of the solution of problem (4), (5) in the class of functions
C2,α

loc (D0) defined above. Let us assume that

Aij , Bi (i, j = 0, n) and C ∈ C2,α
loc (D), F ∈ C0,α(D), g ∈ C2,α(D). (27)

(Without the loose of a generality, we suppose here that g is defined not only on Γ , but
also in D.)

Note that domain Dδ participating in definition of C2,α
loc (D) is not smooth, because it

has two edges {r = δ, x0 = 0} and {r = δ, x0 = h}, which are, in fact, the (n − 1)-
dimensional spheres.

Let us take the domain D∗δ with the boundary Γ ∗δ ∈ C2,α such that Dδ ⊂ D∗δ ⊂ D0.
Moreover, we chose D∗δ so that a part of boundary Γ ∗δ coincide with surface Γ2δ and
lateral surface Qδ of cylinder {r 6 δ, δ 6 x0 6 h − δ}. The remaining part of Γ ∗δ lie
in the cylinder Cδ . It consists from two surfaces σ(1)

δ and σ(2)
δ : first of those joins the

spheres {r = 2δ, x0 = 0} and {r = δ, x0 = δ}; the second one joins the spheres
{r = 2δ, x0 = h} and {r = δ, x0 = h− δ}.

Let {δk} be a vanishing sequence of positive numbers δk, and let {D∗δk} be the
sequence of corresponding domains, which are constructed by the rule given above taking
δ = δk. Observe that Aij , Bi, i, j = 0, n, and C ∈ C2,α(D∗δk), ∂D∗δk ∈ C2,α,
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and, in accordance with (2), operator L is uniformly elliptic in each domain D∗δk , k =
1, 2, . . . . That jointly with Corollary 1 yield the existence of the unique solution uk =
(uk1 , . . . , u

k
m) ∈ C2,α(D∗δk) of Dirichlet problem [12–14]

Lu = F in D∗δk , u|∂D∗δk = g.

Moreover, due to Lemma 1, there holds the estimate

|ukj |0;D∗δk 6M = max
16i6m

{
|gi|0;D, sup

D0

∣∣∣∣fici
∣∣∣∣}, j = 1,m. (28)

Let us define the sequence {ũk} of vector-functions ũk = (ũk1 , . . . , ũ
k
m) by

ũkj (x) =

{
ukj (x) if x ∈ D∗δk ,
gj(x) if x ∈ D \D∗δk .

It is easy to see that every term ũk of this sequence is defined in D and ũk ∈ C2,α(D),
k = 1, 2, . . . .

Lemma 4. Let ε be arbitrary. There exists a subsequence of the sequence {ũk} strongly
convergent in the space C2(Dε).

Proof. Let Lũk = F̃ , where F̃ = (f̃1, . . . , f̃m). Note that F̃ = F if δk > ε. Applying
to operator L the a priori estimates inclusively to the part Γε of boundary ∂Dε, we get
[12–14] that

m∑
j=1

|ũkj |2,α;Dε 6 Nε

m∑
i=1

(
|f̃i|0,α;D∗ε +

∣∣ũki ∣∣0,α;D∗ε + |gi|2,α;Γε
)

with a constant Nε depending on ε.
Let

M1 = max
{
|Lgj |0,α;D, |fj |0,α;D

}
, M2 = |gj |2,α;D.

Due to obvious estimates∣∣Lũkj ∣∣0,α;D∗ε 6M1,
∣∣ũkj ∣∣0,α;D∗ε 6M, |gj |2,α;D∗ε 6M2,

we obtain that ∣∣ũkj ∣∣2,α;Dε 6 Nε(M +M1 +M2).

Thus, the sequence {ũk} is compact in C2,α(Dε). This yields the existence of a subse-
quence strongly convergent in the space C2(Dε).

Remark 1. Assume that some subsequence {ũki} ⊂ {ũk} strongly converges inC2(Dε)
to uε = (uε1 , . . . , uεn) as i → ∞. Then Luε = F in Dε, u|Γε = g, evidently, and,
in view of Lemma 1, there holds the estimate |uεj |0;Dε 6 M , j = 1,m. Moreover,
uε ∈ C2,α(Dε), since ũki ∈ C2,α(Dε), i = 1, 2, . . . , whereas the space C2,α(Dε) is
complete.
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Using the diagonalization method, we shall show that one can choose the subsequence
of sequence {ũk}, which converges to the solution of problem (4), (5).

Let {εj} be the a vanishing sequence of positive numbers and let {Dεj} be sequence
of the the corresponding domains. According to Lemma 4, there exist the subsequences
{ũjki} ⊂ {ũk}, j = 1, 2, . . . , for each i = 1, 2, . . . , which satisfy condition {ũj+1 ki} ⊂
{ũjki} and strongly convergent in corresponding spaces C2(Dεj ), j = 1, 2, . . . . Let us
consider the sequence {vl}, where vl = ũlkl .

Theorem 1. Let the smoothness conditions (27) be fulfilled and let the conditions of
Lemma 2 be satisfied. Then the sequence {vk} determined above converges to the solu-
tion u of problem (4), (5). This solution is unique.

Proof. Let δ be arbitrarily chosen and let j0 be such that εj 6 δ for j > j0. Then
Dδ ⊂ Dεj0

and vl ∈ {ũj0ki} for all l > j0, obviously. Thus, sequence {vl} strongly
converges in the space C2(Dεj0

) to some limit u because of the choice rule of {ũj0ki}.
Thereby, vk → u strongly in C2(Dδ) as k → ∞, since C2(Dδ) ⊂ C2(Dεj0). Taking
in account Remark 1, we obtain that Lu = F in Dδ , u|Γδ = g and |u|0;Dδ 6 M .
Furthemore, u ∈ C2,α(Dδ), because C2,α(Dδ) is complete space. Since δ is arbitrary
chosen, we get that Lu = f in D0, u|Γ0

= g and |u| 6 M in D0, i.e. u is the solution of
problem (4), (5).

The uniqueness of solution u follows from Lemma 2. Inded, if u(1) and u(2) are two
solutions of problem (4), (5), then (u(1) − u(2))|Γ0

= 0. Since operator L satisfies either
condition (a) or condition (b) of Lemma 2, it follows from this lemma that u(1)−u(2) ≡ 0
in D0.
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