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Abstract. In this paper, we are concerned with the long-time behavior of the non-autonomous
complex Ginzburg–Landau type equation with p-Laplacian. We first prove the existence of pullback
absorbing sets in L2(Ω) ∩W 1,p

0 (Ω) ∩ Lq(Ω) for the process {U(t, τ)}t>τ corresponding to the
non-autonomous complex Ginzburg–Landau type equation with p-Laplacian. Next, the existence
of a pullback attractor in L2(Ω) is established by the Sobolev compactness embedding theorem.
Finally, we prove the existence of a pullback attractor in W 1,p

0 (Ω) for the process {U(t, τ)}t>τ by
asymptotic a priori estimates.

Keywords: pullback attractor, non-autonomous, p-laplacian, complex Ginzburg–Landau type
equations, Sobolev compactness embedding theorem, asymptotic a priori estimates.

1 Introduction

In this paper, we consider the existence of pullback attractors in L2(Ω) and W 1,p
0 (Ω)

of the following non-autonomous complex Ginzburg–Landau type equation with
p-Laplacian:
∂u

∂t
− (λ+ iα)∆pu+ κ|u|q−2u+ iβ|u|r−2u− γu = g(x, t), (x, t) ∈ Ω × Rτ , (1)

u = 0, (x, t) ∈ ∂Ω × Rτ , (2)
u(x, τ) = uτ (x), x ∈ Ω, (3)

where Ω ⊂ Rn(n > 3) is a bounded domain with smooth boundary ∂Ω, i =
√
−1,

λ > 0, κ > 0, γ > 0, α, β ∈ R, Rτ = [τ,+∞), the exponent p > 2, q > r > 2 are
constants and u is a complex-valued unknown function.
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The complex Ginzburg–Landau equation is known as an important model describing
spatial pattern formation or the amplitude evolution of instability in non-equilibrium fluid
dynamical systems as well in the theory of phase transitions and superconductivity (see
[11, 26, 27]). In its special cases, the equation meets the nonlinear Schrödinger equation
which is recently studied as various type equations with generalized nonlinear term.
Therefore, more and more mathematicians have paid attention to the complex Ginzburg–
Landau type equation in both theoretical physics and mathematics.

The case that p = 2 is the usual complex Ginzburg–Landau equation and many
authors have studied it extensively by different methods in the recent years (see [2, 7,
13, 15, 16, 17, 28, 29, 30, 31, 37, 41]). In [13], the authors proved the existence of weak
and strong solutions of the complex Ginzburg–Landau equation. The global existence
of unique strong solutions was established in [30] for the complex Ginzburg–Landau
equation under the assumption |β|/κ 6 1/cp by a monotonicity method. In [31], the
uniqueness of strong solutions for the complex Ginzburg–Landau equation in a bounded
domainΩ ⊂ R2 was obtained. The global existence and smoothing effect was established
in [41] by a monotonicity method for the complex Ginzburg–Landau type equation with
the nonlinearity κ|u|p−2u + iβ|u|r−2u, where q > r > 2. In [7], the authors proved the
global existence of strong solutions for the complex Ginzburg–Landau equation in Rn
with initial date u0 ∈ H1(Rn) ∩ Lp(Rn) by a compactness method without any upper
restriction on p > 2 but with the following restriction on (α/λ, β/κ):(

α

λ
,
β

κ

)
∈ CGL

(
1

cp

)
,

where

CGL

(
1

cp

)
:=

{
(x, y) ∈ R2: xy > 0 or

|xy| − 1

|x|+ |y|
6

1

cp
=

2
√
p− 1

p− 2

}
.

Furthermore, if 2 6 p < 2∗ = 2n/(n−2), the strong solutions for the complex Ginzburg–
Landau equation is unique. However, most of the methods used for p = 2 cannot be
applied to (1)–(3) with p > 2, but there are many mathematicians who are still devote to
the existence and uniqueness of strong solutions for the quasi-linear complex Ginzburg–
Landau equation with p-Laplacian. For example, the authors proved the global existence
and uniqueness of strong solutions and the continuous dependence of the initial datum
with respect to the W 1,p

0 (Ω) ∩ Lq(Ω)-topology for the quasi-linear complex Ginzburg–
Landau equation with p-Laplacian for different kinds of regular initial datum under some
assumptions on the ratio (α/λ, β/κ) of the coefficients of (1)–(3) in [28]. In [29], the
global existence, uniqueness and smoothing effect was proved for the quasi-linear com-
plex Ginzburg–Landau equation with p-Laplacian.

The understanding of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to treat this problem for
a dissipative system is to analyze the existence and structure of its attractor. Generally
speaking, the attractor has a very complicated geometry which reflects the complexity of
the long-time behavior of the system. Therefore, it is necessary to study the existence of
attractors for the quasi-linear complex Ginzburg–Landau equation with p-Laplacian in the
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The non-autonomous complex Ginzburg–Landau type equation with p-Laplacian 235

case of n > 3 to explore the complexity of its geometric structure. There have been many
results for the usual complex Ginzburg–Landau equation in one- or two-dimensional
space. For example, the author obtained the upper semi-continuity of approximations of
attractors of the equation in one-dimensional space with p = 4 in [25]. The existence of
global attractors in L2(Ω) and H1

0 (Ω) for the complex Ginzburg–Landau equation in the
two-dimensional spaces was proved in [36]. In [17], the authors proved the existence of
a global attractor in L2(Ω) for the degenerate Ginzburg–Landau and parabolic equations
by the semi-flow method. The authors paid more attention to the long-time behavior of
the complex Ginzburg–Landau equation in the one- or two- dimensional spaces with
nonlinearity p = 2 or p = 6 and obtained the existence of global attractors for the
complex Ginzburg–Landau equation in the one- or two- dimensional spaces with dif-
ferent nonlinearity in [2,12,14,32]. The existence of global attractors for the quasi-linear
complex Ginzburg–Landau equation with p-Laplacian was obtained for n > 3 under
assumption (4) in [42]. Many mathematicians have considered the long-time behavior
of p-Laplacian equation with different kinds of boundary conditions, such as Dirichlet
boundary conditions, dynamic flux boundary conditions and so on (see [1, 6, 39, 43]).

Non-autonomous equations appear in many applications in the natural sciences, so
they are of great importance and interest. The long-time behavior of solutions of non-
autonomous equations have been studied extensively in recent years (e.g., see [4, 5, 9,
10, 18, 19, 22, 33, 38, 40]). For instance, the existence of a pullback attractor in L2(Ω)
was studied in [3] when the external forcing is allowed to be unbounded in the norm of
L2(Ω) and the existence of a pullback attractor in H1

0 (Ω) was obtained in [35] under
the condition of translation boundedness of the external forcing. Later, the existence of
a pullback attractor in H1

0 (Ω) was considered in [21], while the existence of a pullback
attractor in Lp(Ω) was obtained in [20] for the external forcing satisfies the exponential
growth bound ∥∥g(s)

∥∥2
2
6Meα|s|

for all s ∈ R and 0 6 α < λ1, where λ1 is the first eigenvalue of −∆ with Dirichlet
boundary condition. This condition was recently considerably weakened to

t∫
−∞

eλ1s
∥∥g(s)

∥∥2
2

ds <∞

for all t ∈ R, under which the existence of a pullback attractor in Lp(Ω), Lr1(Ω) ×
Lr2(Ω) was obtained in [24, 40], respectively, and the existence of a pullback attractor in
H1

0 (Ω) was proved in [23, 34].
The study of non-autonomous dynamical systems is an important subject, it is nec-

essary to study the existence of pullback attractors for the non-autonomous complex
Ginzburg–Landau type equation with p-Laplacian in the case of n > 3. Nevertheless,
there are few results about the existence of pullback attractors for the non-autonomous
complex Ginzburg–Landau type equation with p-Laplacian in the case of n > 3. There
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are three main reasons: Firstly, compared with the non-autonomous quasi-linear real
Ginzburg–Landau equation with p- Laplacian, due to

(λ+ iα)

∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

and

κ

∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx+ iβ)

∫
Ω

|∇u|p−2∇u · ∇
(
|u|r−2u

)
dx

are indefinite, it is difficult to obtain the existence of pullback absorbing set inW 1,p
0 (Ω)∩

Lq(Ω). Secondly, u > 0 is not meaningful for any u ∈ C \R, therefore, we cannot obtain
the existence of pullback attractor in Lq(Ω) by estimating∫

Ω(|U(t,τ)uτ |>M)

∣∣U(t, τ)uτ
∣∣q dx < εq

to verify the ω-limit compactness of the process {U(t, τ)}t>τ . Thirdly, in our case of
the non-autonomous quasi-linear complex Ginzburg–Landau equation with p-Laplacian,
the growth order of nonlinear term |u|q−2u has no other restriction so that we cannot
use −∆u as the test function to obtain higher regular pullback absorbing set as in [44],
which increase the difficulty in verifying the compactness of the process {U(t, τ)}t>τ
associated with (1)–(3). Furthermore, some a priori estimates obtained for n = 1, 2 or the
autonomous complex Ginzburg–Landau equation with p-Laplacian will be lost for n > 3
and −∆p is nonlinear operator for p > 2 so that it is difficult to obtain the existence
of pullback absorbing sets and get an appropriate form of compactness by verifying the
pullback D condition. Therefore, it is necessary to make a restriction (4) on the ratio
(α/λ, β/κ) of the coefficients of the nonlinear term, give a new Lemma 6 and combine
the idea of norm-to-weak continuous with asymptotic a priori estimates to overcome these
difficulties.

The main purpose of this paper is to study the long-time behavior for the non-au-
tonomous complex Ginzburg–Landau type equation (1)–(3) with p-Laplacian under the
assumptions (

α

λ
,
β

κ

)
∈ S1

(
1

cp

)
∩ S1

(
1

cq

)
(4)

and
t∫

−∞

eθs
∥∥g(s)

∥∥2
2

ds <∞ (5)

for any t ∈ R, where

S1(x0) =
{

(x, y) ∈ R2: |x| 6 x0
}
, θ = min{λ, κ}.
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We first prove the existence of pullback absorbing sets in L2(Ω) ∩W 1,p
0 (Ω) ∩ Lq(Ω).

Next, the existence of a pullback attractor in L2(Ω) is obtained by the Sobolev com-
pactness embedding theorem. Finally, we obtain the existence of a pullback attractor in
W 1,p

0 (Ω) by asymptotic a priori estimates. Here, we state our main theorem as follows.

Theorem 1. Under the assumptions (4)–(5) with (|α|/λ)cp < 1 − δ for some δ ∈
(0, 1) and g ∈ H1

loc(Rτ ;L2(Ω)), let {U(t, τ)}t>τ be a process associated with the non-
autonomous complex Ginzburg–Landau type equation (1)–(3) with p-Laplacian. Then the
process {U(t, τ)}t>τ has a pullback D-attractor A in W 1,p

0 (Ω).

This paper is organized as follows. In the next section, we first recall some definitions
and lemmas of pullback attractor, and then we give the definition of weak solutions and
the well-posedness of weak solutions for the non-autonomous complex Ginzburg–Landau
type equation (1)–(3) with p- Laplacian. Section 3 is devoted to proving the existence of
pullback attractors in L2(Ω) and W 1,p

0 (Ω) for the non-autonomous complex Ginzburg–
Landau type equation (1)–(3) with p-Laplacian under the assumptions (4)–(5).

Throughout this paper, we denote the conjugate of u by u, the real part and imaginary
part of u by Re[u] and Im[u], respectively. For the sake of simplicity, we denote the norm
in Lp(Ω) by ‖·‖p. We shall denote by C the genetic constants depending on λ, α, κ, β,
p, q, which may be different from line to line (and even in the same line).

2 Preliminaries

In this section, we first recall some basic definitions and abstract results about pullback
attractor.

Definition 1. (See [8, 21].) Let X be a complete metric space. A two-parameter family
of mappings {U(t, τ)}t>τ is said to be a norm-to-weak continuous process in X if:

(i) U(τ, τ) = Id for any τ ∈ R;
(ii) U(t, r)U(r, τ) = U(t, τ) for any t > r > τ ;

(iii) U(t, τ)xn ⇀ U(t, τ)x, if xn → x in X .

Lemma 1. (See [21, 40].) Let X , Y be two Banach spaces, and let X∗, Y ∗ be the dual
spaces of X , Y , respectively. If X is dense in Y , the injection i : X → Y is continuous
and its adjoint i∗ : Y ∗ → X∗ is dense. In addition, assume that {U(t, τ)}t>τ is a norm-
to-weak continuous process on Y . Then {U(t, τ)}t>τ is a norm-to-weak continuous pro-
cess on X if and only if {U(t, τ)}t>τ maps compact sets of X into bounded sets of X for
any t, τ ∈ R, t > τ .

Let D be a nonempty class of families D̂ = {D(t): t ∈ R} of nonempty subsets
of X .

Definition 2. (See [40].) A family Â = {A(t): t ∈ R} of nonempty subsets of X is said
to be a pullback D-attractor for the process {U(t, τ)}t>τ in X if:

(i) A(t) is compact in X for any t ∈ R;
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(ii) Â is invariant, i.e., U(t, τ)A(τ) = A(t) for any τ 6 t;
(iii) Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist
(
U(t, τ)D(τ), A(t)

)
= 0

for any t ∈ R and any D̂ ∈ D.

Such a family Â is called minimal A(t) ⊂ C(t) if for any family Ĉ = {C(t): t ∈ R} of
closed subsets of X , limτ→−∞ dist(U(t, τ)B(τ), C(t)) = 0.

Definition 3. (See [4, 40].) It is said that B̂ ∈ D is pullback D-absorbing for the process
{U(t, τ)}t>τ if for any D̂ ∈ D and any t ∈ R, there exists a τ0(t, D̂) 6 t such that
U(t, τ)D(τ) ⊂ B(t) for any τ 6 τ0(t, D̂).

Definition 4. (See [4].) The process {U(t, τ)}t>τ is said to be pullbackD-asymptotically
compact, if for any t ∈ R and any D̂ ∈ D, any sequence τn → −∞ and any sequence
xn ∈ D(τn), the sequence {U(t, τn)xn}∞n=1 is relatively compact in X .

Lemma 2. (See [4, 21, 40].) Let {U(t, τ)}t>τ be a process in X satisfying the following
conditions:

(i) {U(t, τ)}t>τ be norm-to-weak continuous in X;
(ii) there exists a family B̂ of pullback D-absorbing sets {B(t): t ∈ R} in X;

(iii) {U(t, τ)}t>τ is pullback D-asymptotically compact.

Then there exists a minimal pullback D-attractor Â = {A(t): t ∈ R} in X given by

A(t) =
⋂
s6t

⋃
τ6s

U(t, τ)B(τ).

Lemma 3. (See [28].) Let p ∈ (1,∞). Then for non-zero z, w ∈ C with z 6= w,∣∣Im[(|z|p−2 − |w|p−2, z − w)]∣∣ 6 cp Re
[(
|z|p−2 − |w|p−2, z − w

)]
.

Lemma 4. (See [28].)

(i) Let p > 2. Then for z, w ∈ C,

Re
[(
|z|p−2 − |w|p−2, z − w

)]
> 22−p|z − w|p.

(ii) Let p ∈ (1, 2). Then for non-zero z, w ∈ C,

Re
[(
|z|p−2 − |w|p−2, z − w

)]
>

(p− 1)|z − w|2

max{|z|2−p, |w|2−p}
.

Lemma 5. Let q ∈ (2,+∞). Then for any u ∈ C∞0 (Ω), we have∣∣∣∣Im[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]∣∣∣∣ 6 cq Re

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
.
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Lemma 6. Let q > r > 2. Then for every ε > 0, there exists a positive constant Cε such
that for any u ∈ C∞0 (Ω), we have∣∣∣∣Im[ ∫

Ω

|∇u|p−2∇u · ∇
(
|u|r−2u

)
dx

]∣∣∣∣
6 εRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
+ Cε‖∇u‖pp.

Lemma 7. (See [23, 40].) Suppose that

y′(s) + δy(s) 6 b(s)

for some δ > 0, t0 ∈ R and for any s > t0, where the functions y, y′, b are assumed to be
locally integrable and y, b are nonnegative on the interval t < s < t+ r for some t > t0.
Then

y(t+ r) 6 e−δr/2
2

r

t+r/2∫
t

y(s) ds+ e−δ(t+r)
t+r∫
t

eδsb(s) ds

for all t > t0.

Next, we recall the definition of weak solutions for the non-autonomous complex
Ginzburg–Landau type equation (1)–(3) with p-Laplacian.

Definition 5. (See [36].) Assume that uτ ∈ L2(Ω), g ∈ L2
loc(Rτ ;L2(Ω)). A complex-

valued function u(x, t) is called a weak solution for the non-autonomous complex
Ginzburg–Landau type equation (1)–(3) with p-Laplacian if:

(i) u(x, t) ∈ C(Rτ ;L2(Ω)) ∩ Lp(Rτ ;W 1,p
0 (Ω)) ∩ Lq(Rτ ;Lq(Ω));

(ii) u(x, t) satisfies equation (1)–(3) in the sense of distribution and u(x, τ) = uτ ∈
L2(Ω).

Finally, we give the well-posedness of weak solution u(x, t) for the non-autonomous
complex Ginzburg–Landau type equation (1)-(3) with p-Laplacian, which can be obtained
by the Faedo–Galerkin method (see [36]). Here we only state it as follows.

Theorem 2. Assume that uτ ∈ L2(Ω), g ∈ L2
loc(Rτ ;L2(Ω)) and (α/λ, β/κ) ∈ S(1/cp,

1/cq). Then there exists a unique weak solution u(x, t) ∈ C(Rτ ;L2(Ω)) for the non-
autonomous complex Ginzburg–Landau type equation (1)–(3) with p-Laplacian and uτ →
u(t) is continuous on L2(Ω).

By Theorem 2, we can define the operator process {U(t, τ)}t>τ in L2(Ω) as

U(., τ)uτ : R+ × L2(Ω)→ L2(Ω),

which is (L2(Ω), L2(Ω))-continuous.
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3 The existence of pullback attractors

In this section, we prove the existence of pullback attractors in L2(Ω) and W 1,p
0 (Ω) for

the non-autonomous complex Ginzburg–Landau type equation (1)–(3) with p-Laplacian
under assumptions (4)–(5).

3.1 The existence of a pullback attractor in L2(Ω)

In the following, let D be the class of all families {D(t): t ∈ R} of nonempty subsets of
L2(Ω) such that

lim
t→−∞

eθt
[
D(t)

]
= 0,

where [D(t)] = sup{‖u‖2: u ∈ D(t)}. We first prove the existence of pullback absorb-
ing sets inL2(Ω)∩W 1,p

0 (Ω)∩Lq(Ω) for the non-autonomous complex Ginzburg–Landau
type equation (1)–(3) with p-Laplacian under assumptions (4)–(5).

Theorem 3. Assume that the assumptions (4)–(5) hold and g ∈ L2
loc(Rτ ;L2(Ω)). Let

{U(t, τ)}t>τ be a process associated with the non-autonomous complex Ginzburg–
Landau type equation (1)–(3) with p-Laplacian. Then there exists a pullbackD- absorbing
set in L2(Ω) ∩ Lq(Ω) ∩W 1,p

0 (Ω).

Proof. Multiplying (1) by u and integrating over Ω, we get

1

2

d

dt

∥∥u(t)
∥∥2
2

+ λ‖∇u‖pp + κ‖u‖qq − γ‖u‖22 6
∥∥g(t)

∥∥
2
‖u‖2. (6)

Taking the inner product of (1) with −∆pu, we have

1

p

d

dt

∥∥∇u(t)
∥∥p
p

+ λ
∥∥∆pu‖22 + κRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]

− β Im

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|r−2u

)
dx

]
− γ‖∇u‖pp

6
∥∥g(t)

∥∥
2
‖∆pu‖2. (7)

Multiplying (1) by |u|q−2u and integrating over Ω, we obtain

1

q

d

dt

∥∥u(t)
∥∥q
q

+ λRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
+ κ‖u‖2(q−1)2(q−1)

− α Im

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
− γ‖u‖qq

6
∥∥g(t)

∥∥
2
‖u‖q−12(q−1). (8)
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Thanks to (4) and Lemmas 5–6, we deduce that

κRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
− β Im

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|r−2u

)
dx

]

>
κ

2
Re

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
− C

(
κ, |β|

)
‖∇u‖pp (9)

and

λRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]
− α Im

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

]

> λRe

[ ∫
Ω

|∇u|p−2∇u · ∇
(
|u|q−2u

)
dx

](
1− |α|

λ
cp

)
> 0. (10)

It follows from (6)–(10), Hölder inequality, interpolation inequality and Young inequality
that

d

dt

(∥∥u(t)
∥∥2
2

+
∥∥u(t)

∥∥q
q

+
∥∥∇u(t)

∥∥p
p
)

+ θ
(
‖u(t)

∥∥2
2

+
∥∥u(t)

∥∥q
q

+
∥∥∇u(t)

∥∥p
p

+ ‖∆pu‖22 + ‖u‖2(q−1)2(q−1)
)

6 C
(
λ, γ, κ, p, q, |Ω|

)
+ C(λ, γ, κ, p, q)

∥∥g(t)
∥∥2
2

+ C
(
κ, |β|, γ

)
‖∇u‖pp. (11)

Let H(u) = ‖u(t)‖22 + ‖u(t)‖qq + ‖∇u(t)‖pp. From (10), we get

d

dt
H(u) + θH(u)

6 C
(
λ, γ, κ, p, q, |Ω|

)
+ C(λ, γ, κ, p, q)

∥∥g(t)
∥∥2
2

+ C
(
κ, |β|, γ

)
‖∇u‖pp. (12)

Using Lemma 7, we obtain

H
(
u(t+ r)

)
6 e−θr/2

2

r

t+r/2∫
t

H
(
u(s)

)
ds+ C

(
λ, γ, κ, p, q, |Ω|

)
e−θ(t+r)

t+r∫
t

eθs ds

+ C(λ, γ, κ, p, q)e−θ(t+r)
t+r∫
t

eθs
∥∥g(s)

∥∥2
2

ds

+ C
(
κ, |β|, γ

)
e−θ(t+r)

t+r∫
t

eθs
∥∥∇u(s)

∥∥p
p

ds

6 e−θr/2
2

r

t+r/2∫
t

H
(
u(s)

)
ds+ C

(
λ, γ, κ, p, q, |Ω|

)
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+ C(λ, γ, κ, p, q)e−θ(t+r)
t+r∫
t

eθs
∥∥g(s)

∥∥2
2

ds

+ C
(
κ, |β|, γ

) t+r∫
t

∥∥∇u(s)
∥∥p
p

ds. (13)

Next, we estimate the first term in the right hand side of (13).
Combining (6) with Young inequality, we obtain

d

dt

∥∥u(t)
∥∥2
2

+ θ
(
‖∇u‖pp + ‖u‖qq + ‖u‖22

)
6 C(γ, κ)

∥∥g(t)
∥∥2
2

+ C
(
κ, γ, p, |Ω|

)
. (14)

From the classical Gronwall inequality, we get

∥∥u(t)
∥∥2
2
6 ‖uτ‖22eθ(τ−t) + C

(
|Ω|, p, κ, γ, θ

)
+ C(γ, κ)

t∫
τ

e−θ(t−s)
∥∥g(s)

∥∥2
2

ds,

which implies

∥∥u(t)
∥∥2
2
6 2C

(
|Ω|, p, κ, γ, θ

)
+ 2C(γ, κ)e−θt

t∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds (15)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ0(t, D̂).
Integrating (14) from t to t+ r/2 and using (15), we get

θ

t+r/2∫
t

H
(
u(s)

)
ds 6

∥∥u(t)
∥∥2
2

+ C(γ, κ)

t+r/2∫
t

∥∥g(s)
∥∥2
2

ds+ C
(
κ, γ, p, r, |Ω|

)

6
∥∥u(t)

∥∥2
2

+ C(γ, κ)e−θt
t+r/2∫
t

eθs
∥∥g(s)

∥∥2
2

ds+ C
(
κ, γ, p, r, |Ω|

)

6 C
(
κ, γ, p, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds

)
. (16)

By integrating (14) from t to t+ r and using (15), we find

t+r∫
t

H
(
u(s)

)
ds 6 C

(
κ, γ, p, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds

)
(17)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ0(t, D̂).
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Combining (13) with (16)–(17), we conclude that

H
(
u(t+ r)

)
6 C

(
κ, γ, λ, p, q, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds

)
(18)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ0(t, D̂).

Since W 1,p
0 (Ω) ⊂ L2(Ω) is compact, we have the following result.

Corollary 1. Assume that assumptions (4)–(5) hold and g ∈ L2
loc(Rτ ;L2(Ω)). Then the

process {U(t, τ)}t>τ associated with the non-autonomous complex Ginzburg–Landau
type equation (1)–(3) with p-Laplacian has a pullback D-attractor A2 in L2(Ω), which
is compact, connected and invariant.

3.2 The existence of a pullback attractor inW 1,p
0 (Ω)

From Theorem 3 and Lemma 1, we deduce that the process {U(t, τ)}t>τ associated
with (1)-(3) is norm-to-weak continuous in W 1,p

0 (Ω). In this subsection, we prove the
existence of a pullback attractor inW 1,p

0 (Ω) for the non-autonomous complex Ginzburg–
Landau type equation (1)-(3) with p-Laplacian by asymptotic a priori estimates.

First, we give a auxiliary theorem to prove the asymptotical compactness of the pro-
cess {U(t, τ)}t>τ in W 1,p

0 (Ω).

Theorem 4. Assume that (α/λ, β/κ) satisfies (4) and g ∈ H1
loc(Rτ ;L2(Ω)). Let

{U(t, τ)}t>τ be a process associated with the non-autonomous complex Ginzburg–
Landau type equation (1)–(3) with p-Laplacian. Then for any D̂ ∈ D and t ∈ R, there
exist a family of positive constants {ρ(t): t ∈ R} and τ1(t, D̂) 6 t such that∥∥ut(s)∥∥2L2(Ω)

6 ρ(t)

for any uτ ∈ D(τ) and τ 6 τ1(t, D̂), where ut(s) = (d/dt)U(t, τ)uτ |t=s and ρ(t) is
a positive constant which is independent of the initial data.

Proof. Denote v = ut. It is clear that v satisfies the following equation obtained by
differentiating equation (1) with respect to t:

∂v

∂t
− (λ+ iα)

∂(∆pu)

∂t
+ κ

∂(|u|q−2u)

∂t
+ iβ

∂(|u|r−2u)

∂t
− γv = gt(x, t). (19)

Taking the inner product of (19) with v, we have

1

2

d

dt
‖v‖22 + λRe

[ ∫
Ω

∂|∇u|p−2∇u
∂t

· ∇v dx

]
− α Im

[ ∫
Ω

∂|∇u|p−2∇u
∂t

· ∇v dx

]

+ κRe

[ ∫
Ω

∂|u|q−2u
∂t

v dx

]
− β Im

[ ∫
Ω

∂|u|r−2u
∂t

v dx

]
6 γ‖v‖22 + ‖gt‖2‖v‖2. (20)
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By mean of the method in the proof of Lemmas 5–6 and combining (4) with Lemmas 3–4,
we obtain

λRe

[ ∫
Ω

∂|∇u|p−2∇u
∂t

· ∇v dx

]
− α Im

[ ∫
Ω

∂|∇u|p−2∇u
∂t

· ∇v dx

]
> 0 (21)

and

κRe

[ ∫
Ω

∂|u|q−2u
∂t

v dx

]
− β Im

[ ∫
Ω

∂|u|r−2u
∂t

v dx

]

> κRe

[ ∫
Ω

∂|u|q−2u
∂t

v dx

]
− C‖v‖22. (22)

Thanks to (20)–(22), we obtain

d

dt
‖v‖22 6 2(γ + C)‖v‖22 + C‖gt‖22.

Integrating (11) from t to t+ r and using (17)–(18), we obtain

λ

t+1∫
t

∥∥∆pu(s)
∥∥2
2

ds+ κ

t+1∫
t

∥∥u(s)
∥∥2(q−1)
2(q−1) ds

6 C
(
κ, γ, λ, p, q, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds

)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ0(t, D̂).
Since

‖v‖2 6
√
λ2 + |α|2‖∆pu‖2 + κ‖u‖q−12(q−1) + |β|‖u‖r−12(r−1) + γ‖u‖2 + ‖g(t)‖2,

we obtain that

t+1∫
t

∥∥ut(s)∥∥22 ds 6 C
(
κ, γ, λ, p, q, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
∥∥g(s)

∥∥2
2

ds

)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ0(t, D̂).
Using the uniform Gronwall inequality, we get

∥∥ut(t+ 2r)
∥∥2
2
6 C

(
κ, γ, λ, p, q, r, |Ω|

)(
1 + e−θt

t+r∫
−∞

eθs
(∥∥g(s)

∥∥2
2

+
∥∥gt(s)∥∥22)ds

)

uniformly with respect to all initial conditions uτ ∈ D(τ) for τ 6 τ1(t, D̂).
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Theorem 5. Under the assumptions (4)–(5) with |α|/λcp < 1−δ for some δ ∈ (0, 1) and
g ∈ H1

loc(Rτ ;L2(Ω)), let {U(t, τ)}t>τ be a process associated with the non-autonomous
complex Ginzburg–Landau type equation (1)–(3) with p-Laplacian. Then the process
{U(t, τ)}t>τ is pullback D-asymptotically compact in W 1,p

0 (Ω).

Proof. Let B0 = {B(t): t ∈ R} be a pullback D-absorbing set in W 1,p
0 (Ω) ∩ Lq(Ω) ∩

L2(Ω) obtained in Theorem 3, then we need only to show that for any t ∈ R, any τn →
−∞ and u0n ∈ B(τn), {un(τn)}∞n=0 is pre-compact in W 1,p

0 (Ω), where un(τn) =
u(t; τn, u0n) = U(t, τn)u0n.

In fact, from Corollary 1, we know that {un(τn)}∞n=0 is pre-compact in L2(Ω).
Without loss of generality, we assume that {un(τn)}∞n=0}∞n=0 is a Cauchy sequence in
L2(Ω).

In the following, we prove that{un(τn)}∞n=0 is a Cauchy sequence in W 1,p
0 (Ω). By

simply calculations, we deduce from Lemmas 3–4 that

λδ22−p‖unk(τnk)− unj (τnj )‖
p

W 1,p
0 (Ω)

+κRe
[(∣∣unk(τnk)

∣∣q−2unk(τnk)−
∣∣unj (τnj )∣∣q−2unj (τnj ), unk(τnk)−unj (τnj )

)]
−βRe

[(∣∣unk(τnk)
∣∣r−2unk(τnk)−

∣∣unj (τnj )∣∣r−2unj (τnj ), unk(τnk)−unj (τnj )
)]

6

(
− d

dt
unk(τnk)+γunk(τnk)+

d

dt
unj (τnj )−γunj (τnj ), unk(τnk)−unj (τnj )

)
6

∥∥∥∥ d

dt
unk(τnk)− d

dt
unj (τnj )

∥∥∥∥
L2(Ω)

∥∥unk(τnk)− unj (τnj )
∥∥
L2(Ω)

+ γ
∥∥unk(τnk)− unj (τnj )

∥∥2
L2(Ω)

.

By mean of the method in the proof of Lemmas 5-6 and combining (4) with Lemmas 3-4,
we obtain

κRe
[(∣∣unk(τnk)

∣∣q−2unk(τnk)−
∣∣unj (τnj )∣∣q−2unj (τnj ), unk(τnk)−unj (τnj )

)]
−βRe

[(∣∣unk(τnk)
∣∣r−2unk(τnk)−

∣∣unj (τnj )∣∣r−2unj (τnj ), unk(τnk)−unj (τnj )
)]

> −C
∥∥unk(τnk)−unj (τnj )

∥∥2
L2(Ω)

.

Thanks to Theorem 1 and Theorem 4, Theorem 5 is proved immediately.

From Theorems 3, 5 and Lemma 2, we obtain directly our main Theorem 1.
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