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Abstract. In this paper, by using the factorization technique and the direct integral method, some
exact travelling wave solutions of the modified Novikov equation are obtained. Moreover, our
results extend previously known results in the literature.
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1 Introduction

Recently, Vladimir Novikov [9] presented a new integrable partial differential equation
(called Novikov equation)

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (1)

which was discovered in a symmetry classification of nonlocal PDEs with quadratic or
cubic nonlinearity. By using the perturbation symmetry approach [7], Novikov found the
first few symmetries and a scalar Lax pair for Eq. (1), then proved that it is integrable [9].
Hone and Wang [5] gave a matrix Lax pair for the Novikov equation and found its
infinitely many conserved quantities, as well as a bi-Hamiltonian structure. Then using
the matrix Lax pair found by Hone and Wang [5], Hone, Lundmark and Szmigielski [4]
obtained the explicit formulas for multipeakon solutions of Eq. (1). For other studies
concerned with blow-up phenomenon, Cauchy problem of Eq. (1), we refer the reader to
see [3, 6, 8, 10, 13, 14].
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More recently, Zhao and Zhou [15] proposed the following modified Novikov equa-
tion:

ut − uxxt + 4u4ux = 3uuxuxx + u2uxxx. (2)

By using the extended-tanh function method [1,2] and the homogeneous balance method
[11], some exact travelling wave solutions to Eq. (2) are established. However, it should
be noted that when the extended-tanh function method and the homogeneous balance
method are applied to the modified Novikov equation (2), both need resort to computer
symbol system (for example, Maple and Mathematica). In this paper, we shall investigate
and search for the travelling wave solutions of the modified Novikov equation (2) by
using the factorization technique proposed by Wang and Li [12]. Namely, we firstly use
the factorization technique to simplify Eq. (2) into the first-order ordinary differential
equations, and then solve it by direct integral method.

The rest of this paper is organized as follows. In Section 2, we introduce the main idea
of the factorization technique and its applications to the reduction of Eq. (2). Some exact
travelling wave solutions for Eq. (2) are obtained through direct integral in Section 3.
A brief discussion is provided in Section 4.

2 The factorization technique and its application to Eq. (2)

Wang and Li [12] proposed the following factorization technique, which establishes the
conditions concerning the factorization of a third-order nonlinear ordinary differential
equation (ODE).

Proposition 1. Given a nonlinear ODE of third-order

f(U)U ′′′ + g(U,U ′)U ′′ + h(U)U ′ + k(U) = 0. (3)

Equation (3) owns the factorization[
f(U)∂ξ − φ1(U)U ′ − φ2(U)

][
∂ξξ − φ3(U)∂ξ − φ4(U)

]
U = 0

if and only if the following expressions hold:

g(U,U ′) = −f(U)φ3(U)− φ1(U)U ′ − φ2(U),

φ1(U)φ3(U)− f(U)
dφ3(U)

dU
= 0,

k(U) = φ2(U)φ4(U)U,

h(U) = φ2(U)φ3(U)− f(U)
dφ4(U)

dU
U − f(U)φ4(U) + φ1(U)φ4(U)U.

Here U ′ denotes the derivative of U about ξ.

Taking travelling wave transformation

u(x, t) = U(ξ), ξ = x− ct,
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and substituting it into Eq. (2) leads to the following third-order ODE:(
U2 − c

)
U ′′′ + 3UU ′U ′′ −

(
4U4 − c

)
U ′ = 0. (4)

Comparing it with Eq. (3) yields

f(U) = U2 − c, g(U,U ′) = 3UU ′, h(U) = c− 4U4, k(U) = 0.

According to the factorization technique described in Proposition 1, we have

3UU ′ =
(
c− U2

)
φ3(U)− φ1(U)U ′ − φ2(U),

φ1(U)φ3(U) +
(
c− U2

)dφ3(U)

dU
= 0,

φ2(U)φ4(U)U = 0,

c− 4U4 = φ2(U)φ3(U) +
(
c− U2

)dφ4(U)

dU
U +

(
c− U2

)
φ4(U) + φ1(U)φ4(U)U,

which has the following nontrivial solution:

φ1(U) = −3U, φ2(U) = φ3(U) = 0, φ4(U) =
2

3
U2 + 1, c = 2.

So, Eq. (4) has the following factorization:[(
U2 − 2

)
∂ξ + 3UU ′

][
∂ξξ −

(
2

3
U2 + 1

)]
U = 0. (5)

It is easily seen that some special solutions of (5) could be obtained by solving the
following second-order differential equation

U ′′ = U

(
2

3
U2 + 1

)
. (6)

Integrating Eq. (6), we obtain

U ′2 =
1

3

(
U4 + 3U2 + h

)
, (7)

where h is an arbitrary integral constant.

3 Some exact travelling wave solutions for Eq. (2)

In this section, we will proceed to derive some exact travelling wave solutions for Eq. (2).
Obviously, it is easy to see that the problem of finding particular solutions to Eq. (2) can
be addressed by solving the reduced Eq. (7).

Making transformation φ = U2 > 0 and submitting it into (7) yields

φ′2 =
4

3
φ
(
φ2 + 3φ+ h

)
. (8)
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Denote that F (φ) = φ2 + 3φ+ h, whose complete discriminant is given by

∆ = 9− 4h.

According to the signs of ∆, we distinguish three cases to discuss the travelling wave
solutions for Eq. (2).
Case 1. ∆ = 0 (namely h = 9/4). In this case, we have F (φ) = (φ + 3/2)2. From (8)
we get

± 2√
3
(ξ − ξ0) =

4√
6
arctan

√
2

3
φ,

which yields

φ1(ξ) =
3

2
tan2

√
2

2
(ξ − ξ0),

where ξ0 is an arbitrary integral constant. So, Eq. (2) admits triangle function forms of
travelling wave solutions as follows:

u1(x, t) = ±
√
6

2
tan

√
2

2
(x− 2t− ξ0). (9)

Case 2. ∆ > 0 (namely h < 9/4). In this case, we have F (φ) = (φ− α)(φ− β), where

α =
−3 +

√
9− 4h

2
, β =

−3−
√
9− 4h

2
. (10)

If h = 0, then we have α = 0, β = −3, and so (8) becomes

φ′2 =
4

3
φ2(φ+ 3). (11)

Integrating (11) directly leads to

± 2√
3
(ξ − ξ0) =

1√
3
ln

∣∣∣∣√φ+ 3−
√
3

√
φ+ 3 +

√
3

∣∣∣∣. (12)

Note that φ > 0, then consequently from (12) we can obtain

φ2(ξ) = −3 + 3 coth2(ξ − ξ0) = 3 csch2(ξ − ξ0),

where ξ0 is an arbitrary integral constant. This implies that Eq. (2) admits the following
singular travelling wave solutions:

u2(x, t) = ±
√
3 csch(x− 2t− ξ0). (13)

If h < 0, then from (10) we have β < 0 < α. Making variable transformation

φ = α sec2 θ (14)
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and submitting it into (8), we have

± 2√
3
(ξ − ξ0) =

∫
2α sec2 θ tan θ dθ

α sec θ tan θ
√
α− β + α tan2 θ

,

which can be reduced to

±
√
α− β
3

(ξ − ξ0) =
∫

dθ√
1− k2 sin2 θ

, (15)

where k2 = β/(β − α). Recall the definitions of Jacobi elliptic sine or cosine function,
we can obtain from (15) and (14) that

φ3(ξ) = αcn−2
(√

α− β
3

(ξ − ξ0), k
)
,

where ξ0 is an arbitrary integral constant. Therefore, Eq. (2) admits the following singular
periodic wave solutions:

u3(x, t) = ±
√
αcn−1

(√
α− β
3

(x− 2t− ξ0), k
)
. (16)

If 0 < h < 9/4, then from (10) we have β < α < 0. Making variable transformation

φ = −α tan2 θ.

Implementing similar arguments as above, one can get

φ4(ξ) = −α
sn2(

√
(α− β)/3(ξ − ξ0), k)

cn2(
√

(α− β)/3(ξ − ξ0), k)
,

where k2 = (β − α)/α. Thus, it implies that Eq. (2) still admits the singular periodic
wave solutions as

u4(x, t) = ±
√
−αsn(

√
(α− β)/3(x− 2t− ξ0), k)

cn(
√

(α− β)/3(x− 2t− ξ0), k)
.

Case 3. ∆ < 0 (that is, h > 9/4). In this case, we can take another change of the variable

φ =
√
h tan2

θ

2
. (17)

Then from (8) we have

± 2√
3
(ξ − ξ0) =

∫ √
h sec2(θ/2) tan(θ/2) dθ

h3/4 tan(θ/2)
√
tan4(θ/2) + 3h−1/2 tan2(θ/2) + 1

, (18)
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which can be simplified as

±
√

4

3
h1/2(ξ − ξ0) =

∫
dθ√

1− k2 sin2 θ
, (19)

where k2 = 1/2− 3/(4
√
h). From (19) and (17) we can obtain

φ5(ξ) = h1/2
1− cn(

√
(4/3)h1/2(ξ − ξ0), k)

1 + cn(
√

(4/3)h1/2(ξ − ξ0), k
,

where ξ0 is an arbitrary integral constant. Therefore, Eq. (2) admits the following elliptic
periodic wave solutions

u5(x, t) = ±h1/4
(
1− cn(

√
(4/3)h1/2(x− 2t− ξ0), k)

1 + cn(
√
(4/3)h1/2(x− 2t− ξ0), k)

)1/2

.

Remark 1. Since tan2(x+ π/2) = cot2 x, then from (9) we can find that the functions

u∗1(x, t) = ±
√
6

2
cot

√
2

2
(x− 2t− ξ0) (20)

are also the exact solutions of Eq. (2). Note that sec2 x−1 = tan2 x, csc2 x−1 = cot2 x,
it is easy to see that the above solutions (9) and (20) are in agreement with the solutions
(42) (or (16)), (40) obtained in [15], respectively. Furthermore, solution (13) agrees well
with solutions (18) and (19) described in [15]. However, to the best of our knowledge, the
solutions just like u4(x, t) and u5(x, t) are new and could not be found in [15].

Remark 2. By comparing with the method used in [15], which requires the aid of com-
puter symbolic computation, the advantages of our method are very simple and direct.
Thus, it also reminds us that before searching for exact solutions of various nonlinear
wave equations by using symbolic computation we should remember it will be better to
use the direct method.

4 Conclusions

In summary, we investigate and obtain some exact travelling wave solutions of the modi-
fied Novikov equation by applying the factorization technique and direct integral method.
It is shown that our results are new and extend some previously known results in the
literature. However, it should also be noted that we have only obtained some particular
travelling wave solutions to the modified Novikov equation. As for more general exact
solutions, we believe that it can be proceeded by relaxing some restrictions mentioned in
the present work. These are being pursued currently.
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