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1 Introduction

The following definition was given by Branciari.

Definition 1. (See [5].) Let X be a nonempty set, and let d : X × X → [0,+∞) be
a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X , each distinct from
x and y:

(r1) d(x, y) = 0 iff x = y;
(r2) d(x, y) = d(y, x);
(r3) d(x, y) 6 d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

Then (X, d) is called a generalized metric space (g.m.s.).
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The above definition introduces one of the generalizations of metric spaces that be-
came known as generalized metric spaces (g.m.s.) or rectangular spaces. Several authors
(see the references cited in [19, 20]) proved various (common) fixed point results in such
spaces. It may be noticed that, obviously, each metric space is a g.m.s., but a g.m.s. might
not be metrizable (see [22, 30]). In particular, its topology may not be Hausdorff, as
an example given in [26, 27] shows (see further Example 2). The concept of general-
ized metric space is similar to that of metric space. However, it is very difficult to treat
this concept because generalized metric space does not necessarily have the topology,
which is compatible with d (see [30, Ex. 7]). So, this concept is very interesting to
researchers.

On the other hand, b-metric spaces were introduced by Bakhtin [2] and then exten-
sively used by Czerwik [6, 7].

Definition 2. (See [6].) Let X be a (nonempty) set, and s > 1 be a given real number.
A function d : X × X → [0,∞) is a b-metric if, for all x, y, z ∈ X , the following
conditions are satisfied:

(b1) d(x, y) = 0 iff x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) 6 s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

It is important to notice that b-metric spaces are also not metrizable. In particular,
a b-metric might not be a continuous function of its variables (see [15, Ex. 2]). There
is a vast literature concerning fixed point problems for single and multivalued mappings
in b-metric spaces (see, e.g., [1, 14, 16, 17, 23, 24, 25, 28, 29] and the references cited
therein).

In this paper, b-generalized metric spaces are introduced having a combination of
properties of g.m.s’s and b-metric spaces. Some fixed point results dealing with ratio-
nal type contractions and almost generalized weakly contractive mappings are obtained.
Examples are given to support these results.

2 Definition and basic properties

Definition 3. LetX be a nonempty set, s > 1 be a given real number, and let d : X×X →
[0,+∞) be a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X , each
distinct from x and y:

(br1) d(x, y) = 0 iff x = y;
(br2) d(x, y) = d(y, x);
(br3) d(x, y) 6 s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality).

Then (X, d) is called a b-rectangular or a b-generalized metric space (b-g.m.s.).

The following gives some easy examples of b-g.m.s’s.
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Example 1. Let (X, ρ) be a g.m.s., and p > 1 be a real number. Let d(x, y) = (ρ(x, y))p.
Evidently, from the convexity of function f(x) = xp for x > 0 and by Jensen inequality
we have

(a+ b+ c)p 6 3p−1
(
ap + bp + cp

)
for nonnegative real numbers a, b, c. So, it is easy to obtain that (X, d) is a b-g.m.s with
s 6 3p−1.

Convergent and Cauchy sequences in b-g.m.s., completeness, as well as open balls
Br(d), can be introduced in a standard way. However, the following example, constructed
according to [27, Ex. 1.1], shows some properties of b-generalized metrics not shared by
standard metrics.

Example 2. Let A = {0, 2}, B = {1/n: n ∈ N} and X = A ∪B. Define ρ : X ×X →
[0,+∞) as follows:

ρ(x, y) =


0, x = y,

1, x 6= y and {x, y} ⊂ A or {x, y} ⊂ B,
y, x ∈ A, y ∈ B,
x, x ∈ B, y ∈ A.

Then (X, ρ) is a complete g.m.s. Now, taking d(x, y) = ρ(x, y)2, according to Exam-
ple 1, we obtain a b-g.m.s. (X, d) with s = 3. It can be shown that:

1. The sequence {1/n}n∈N converges to both 0 and 2;
2. limn→∞ 1/n = 0, but 1 = limn→∞ d(1/n, 1/2) 6= d(0, 1/2) = 1/4; hence, d is

not a continuous function.

As shown in the previous example, a sequence in a b-g.m.s. may have two limits.
However, there is a special situation, where this is not possible, and this will be useful in
some proofs. The following lemma is a variant of [18, Lemma 1.10] and [19, Lemma 1].

Lemma 1. Let (X, d) be a b-g.m.s., and let {xn} be a Cauchy sequence in X such that
xm 6= xn whenever m 6= n. Then {xn} can converge to at most one point.

Proof. Suppose, to the contrary, that limn→∞ xn = x, limn→∞ xn = y and x 6= y. Since
xm and xn are distinct elements, as well as x and y, it is clear that there exists ` ∈ N such
that x and y are different from xn for all n > l. For m,n > `, the rectangular inequality
implies that

d(x, y) 6 s
[
d(x, xm) + d(xm, xn) + d(xn, y)

]
.

Taking the limit as m,n → ∞, it follows that d(x, y) = 0, i.e., x = y. A contradic-
tion.

We will also need the following simple lemma about the convergent sequences in the
proof of our main results.

Lemma 2. Let (X, d) be a b-g.m.s.
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(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y
as n→∞ with x 6= y, and xn 6= x, yn 6= y for n ∈ N. Then we have

1

s
d(x, y) 6 lim inf

n→∞
d(xn, yn) 6 lim sup

n→∞
d(xn, yn) 6 sd(x, y).

(b) If y ∈ X and {xn} is a Cauchy sequence in X with xn 6= xm for infinitely many
m,n ∈ N, n 6= m, converging to x 6= y, then

1

s
d(x, y) 6 lim inf

n→∞
d(xn, y) 6 lim sup

n→∞
d(xn, y) 6 sd(x, y)

for all x ∈ X .

Proof. (a) Using the b-rectangular inequality in the given b-g.m.s, it is easy to see that

d(x, y) 6 sd(x, xn) + sd(xn, yn) + sd(yn, y)

and
d(xn, yn) 6 sd(xn, x) + sd(x, y) + sd(y, yn).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in
the second inequality, we obtain the desired result.

(b) If y ∈ X , then, for infinitely many m,n ∈ N,

d(x, y) 6 sd(x, xn) + sd(xn, xm) + sd(xm, y)

and
d(xn, y) 6 sd(xn, xm) + sd(xm, x) + sd(x, y).

In this paper, by an ordered b-generalized metric space we will understand a triple
(X,4, d), where (X,4) is a partially ordered set, and (X, d) is a b-g.m.s.

3 Main results

3.1 Results under Geraghty-type conditions

In 1973, Geraghty [13] proved a fixed point result, generalizing the Banach contraction
principle. Several authors proved later various results using Geraghty-type conditions.
Fixed point results of this kind in b-metric spaces were obtained by Ðukić et al. in [9].

Following [9], for a real number s > 1 (the case s = 1 is easy and well known), let Fs
denote the class of all functions β : [0,∞)→ [0, 1/s) satisfying the following condition:

lim sup
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0.

Nonlinear Anal. Model. Control, 21(5):614–634
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Theorem 1. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s > 1. Let
f : X → X be an increasing mapping with respect to 4 such that there exists an element
x0 ∈ X with x0 4 fx0. Suppose that

d(fx, fy) 6 β
(
d(x, y)

)
M(x, y) (1)

for some β ∈ Fs and all comparable elements x, y ∈ X , where

M(x, y)

= max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)
,
d(x, fx)d(y, fy)

1 + d(x, y)
,

d(x, fx)d(x, fy)

1 + d(x, fy) + d(y, fx)

}
.

If f is continuous, then f has a fixed point. Moreover, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

Proof. Starting with the given x0, put xn = fnx0. If xn = xn+1 for some n ∈ N, then
xn = fxn. Thus, xn is a fixed point of f . Therefore, we will assume that xn 6= xn+1 for
all n ∈ N. Since x0 4 fx0 and f is an increasing function, we obtain by induction that

x0 4 fx0 4 f2x0 4 · · · 4 fnx0 4 fn+1x0 4 · · · .

Step I. We will show that limn→∞ d(xn, xn+1) = 0. Since xn 4 xn+1 for each
n ∈ N, then by (1) we have

d(xn, xn+1) = d(fxn−1, fxn) 6 β
(
d(xn−1, xn)

)
M(xn−1, xn)

6
1

s
d(xn−1, xn) 6 d(xn−1, xn), (2)

because

M(xn−1, xn)

= max

{
d(xn−1, xn),

d(xn−1, fxn−1)d(xn, fxn)

1 + d(fxn−1, fxn)
,
d(xn−1, fxn−1)d(xn, fxn)

1 + d(xn−1, xn)
,

d(xn−1, fxn−1)d(xn−1, fxn)

1 + d(xn−1, fxn) + d(xn, fxn−1)

}
= max

{
d(xn−1, xn),

d(xn−1, xn)d(xn, xn+1)

1 + d(xn, xn+1)
,
d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn)
,

d(xn−1, xn)d(xn−1, xn+1)

1 + d(xn−1, xn+1) + d(xn, xn)

}
6 max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn)d(xn−1, xn+1)

1 + d(xn−1, xn+1)

}
6 max

{
d(xn−1, xn), d(xn, xn+1)

}
.
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If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then from (2) we have

d(xn, xn+1) 6 β
(
d(xn, xn−1)

)
M(xn, xn−1)

<
1

s
d(xn, xn+1) < d(xn, xn+1),

which is a contradiction. Hence, max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn), so,
from (2),

d(xn, xn+1) 6 β
(
d(xn, xn−1)

)
M(xn−1, xn) 6 d(xn−1, xn).

Therefore, the sequence {d(xn, xn+1)} is decreasing. Then there exists r > 0 such that
limn→∞ d(xn, xn+1) = r. Suppose that r > 0. Then, letting n → ∞ in (2), we have
r 6 r/s, which is impossible (since s > 1). Hence, r = 0, that is,

lim
n→∞

d(xn, xn+1) = 0. (3)

Step II. Suppose first that xn = xm for some n > m, so, we have xn+1 = fxn =
fxm = xm+1. By continuing this process, xn+k = xm+k for k ∈ N. Then (1) and Step I
imply that

d(xm, xm+1) = d(xn, xn+1) 6 β
(
d(xn−1, xn)

)
M(xn−1, xn)

6 β
(
d(xn−1, xn)

)
max

{
d(xn−1, xn), d(xn, xn+1)

}
.

If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then we have

d(xm, xm+1) 6 β
(
d(xn−1, xn)

)
d(xn, xn+1) < d(xn, xn+1),

a contradiction. If max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn), then we have

d(xm, xm+1) < d(xn−1, xn) 6 β
(
d(xn−2, xn−1)

)
M(xn−2, xn−1)

6 β
(
d(xn−2, xn−1)

)
max

{
d(xn−2, xn−1), d(xn−1, xn)

}
< d(xn−2, xn−1) < · · · < d(xm, xm+1),

a contradiction. Thus, in what follows, we can assume that xn 6= xm for n 6= m. Then
we can prove that the sequence {xn} is a b-g.m.s. Cauchy sequence.

Using the b-rectangular inequality and by (1), we have

d(xn, xm) 6 sd(xn, xn+1) + sd(xn+1, xm+1) + sd(xm+1, xm)

6 sd(xn, xn+1) + sβ
(
d(xn, xm)

)
M(xn, xm) + sd(xm, xm+1). (4)

Here

d(xn, xm) 6M(xn, xm)

= max

{
d(xn, xm),

d(xn, fxn)d(xm, fxm)

1 + d(fxn, fxm)
,
d(xn, fxn)d(xm, fxm)

1 + d(xn, xm)
,

d(xn, fxn)d(xn, fxm)

1 + d(xn, fxm) + d(xm, fxn)

}
.
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Taking the upper limit as m,n→∞ in the above inequality and using (3), we get

lim sup
m,n→∞

M(xn, xm) = lim sup
m,n→∞

d(xn, xm).

Hence, letting m,n→∞ in (4), we obtain

lim sup
m,n→∞

d(xn, xm) 6 lim sup
m,n→∞

sβ
(
d(xn, xm)

)
lim sup
m,n→∞

d(xn, xm).

Now, we claim that limm,n→∞ d(xn, xm) = 0. If, on the contrary, lim supm,n→∞ d(xn,
xm) 6= 0, then we get

1

s
6 lim sup

m,n→∞
β
(
d(xn, xm)

)
.

Since β ∈ Fs, we deduce that limm,n→∞ d(xn, xm) = 0, which is a contradiction. Con-
sequently, {xn} is a b-g.m.s. Cauchy sequence in X . Since (X, d) is b-g.m.s. complete,
the sequence {xn} b-g.m.s-converges to some z ∈ X , that is, limn→∞ d(xn, z) = 0.

Step III. Now, we show that z is a fixed point of f . Suppose that, on the contrary,
fz 6= z. Then, by Lemma 1, it follows that xn differs from both fz and z for n sufficiently
large. Hence, we can apply the b-rectangular inequality to obtain

d(fz, z) 6 sd(fz, fxn) + sd(fxn, fxn+1) + sd(fxn+1, z).

Letting n → ∞ and using the continuity of f , we have fz = z. Thus, z is a fixed point
of f .

Finally, suppose that the set of fixed points of f is well ordered. Assume, on the
contrary, that u and v are two fixed points of f such that u 6= v. Then by (1) we have

d(u, v) = d(fu, fv) 6 β
(
d(u, v)

)
M(u, v, a)

= β
(
d(u, v)

)
d(u, v) <

1

s
d(u, v),

because

M(u, v)

= max

{
d(u, v),

d(u, fu)d(v, fv)

1 + d(fu, fv)
,
d(u, fu)d(v, fv)

1 + d(u, v)
,

d(u, fu)d(u, fv)

1 + d(u, fv) + d(v, fu)

}
= max

{
d(u, v), 0

}
= d(u, v).

So, we get d(u, v) < d(u, v)/s, a contradiction. Hence, u = v, and f has a unique
fixed point. Conversely, if f has a unique fixed point, then the set of fixed points of f is
a singleton, and hence, it is well ordered.

Note that the continuity of f in Theorem 1 can be replaced by another property.

Theorem 2. Under the hypotheses of Theorem 1, without the continuity assumption on f ,
assume that whenever {xn} is a nondecreasing sequence in X such that xn → u, one
has xn 4 u for all n ∈ N. Then f has a fixed point.
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Proof. Repeating the proof of Theorem 1, we construct an increasing Cauchy sequence
{xn} with xn 6= xm for all m 6= n in X such that xn → z ∈ X . Using the assumption
onX we have xn 4 z. Now, we show that fz = z. Suppose, on the contrary, that fz 6= z.
By (1) and Lemma 2,

1

s
d(z, fz) 6 lim sup

n→∞
d(xn+1, fz) 6 lim sup

n→∞
β
(
d(xn, z)

)
lim sup
n→∞

M(xn, z),

where

lim
n→∞

M(xn, z) = lim
n→∞

max

{
d(xn, z),

d(xn, fxn)d(z, fz)

1 + d(fxn, fz)
,
d(xn, fxn)d(z, fz)

1 + d(xn, z)
,

d(xn, fxn)d(xn, fz)

1 + d(xn, fz) + d(z, fxn)

}
= 0

(see (3)). Therefore, we deduce that d(z, fz) 6 0, a contradiction. Hence, we have
z = fz.

We illustrate the usefulness of the obtained results by the following example.

Example 3. Let X = {a, b, c, δ, e} be equipped with the order 4 given by

4 =
{
(a, a), (b, b), (c, c), (δ, δ), (e, e), (δ, a), (δ, b), (δ, c), (δ, e), (a, c), (b, c), (e, c)

}
,

and let d : X ×X → [0,+∞) be given as

d(x, x) = 0 for x ∈ X,
d(x, y) = d(y, x) for x, y ∈ X,
d(a, b) = 9t,

d(a, c) = d(a, e) = d(b, c) = d(c, e) = t,

d(a, δ) = d(b, δ) = d(b, e) = d(c, δ) = d(δ, e) = 4t,

where 0 < t < −(1/4) ln(3/4), i.e., e−4t > 3/4. Then it is easy to check that (X,4, d)
is a (complete) ordered b-g.m.s. with parameter s = 3. Consider the mapping f : X → X
defined as

f =

(
a b c δ e
c c c a c

)
.

It is easy to check that all the conditions of Theorem 1 are fulfilled with β(u) = (1/3)e−4u

for u > 0 and β(0) ∈ [0, 1/3). In particular, the contractive condition (1) is nontrivial
only in the case when x ∈ {a, b, c, e}, y = δ (or vice versa) when it reduces to

d(fx, fy) = d(c, a) = t =
1

3
· 3
4
· 4t < 1

3
e−4t · 4t

= β(4t)d(x, y) 6 β
(
d(x, y)

)
M(x, y).

It follows that f has a (unique) fixed point (which is z = c).
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622 J.R. Roshan et al.

Note that (X, d) is, obviously, neither a metric space, nor a generalized metric space
(for example, d(a, b) = 9t > t + t + t = d(a, e) + d(e, c) + d(c, b)). It is a b-metric
space, though, but with parameter σ = 9/2 > s (because, for example, d(a, b) = 9t
and d(a, c) + d(c, b) = 2t). However, the conclusion about the existence of fixed point
cannot be obtained using, for example, [9, Thm. 3.8] (which is a b-metric version of our
Theorem 1). Indeed, no matter how t > 0 and α > 0 are chosen, the respective Geraghty-
type function β(u) = (2/9)e−αu, u > 0, cannot be used to satisfy the contractive
condition

d(fx, fy) 6 β
(
d(x, y)

)
d(x, y).

Namely, if it were true, for x ∈ {a, b, c, e} and y = δ, we would get

d(fx, fy) = d(c, a) = t 6
2

9
e−4αt · 4t = β(4t) · 4t = β

(
d(x, y)

)
d(x, y),

which would imply that e−4αt > 9/8 > 1, a contradiction.

If in the above theorems, we take β(t) = r, where 0 6 r < 1/s, then we have the
following corollary.

Corollary 1. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s. Let f :
X → X be an increasing mapping with respect to 4 such that there exists an element
x0 ∈ X with x0 4 fx0. Suppose that for some r with 0 6 r < 1/s,

d(fx, fy) 6 rM(x, y)

holds for all comparable elements x, y ∈ X , where M(x, y) is as in Theorem 1. If f is
continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X , one
has xn 4 u for all n ∈ N, then f has a fixed point. Additionally, the set of fixed points
of f is well ordered if and only if f has one and only one fixed point.

Corollary 2. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s. Let f :
X → X be an increasing mapping with respect to 4 such that there exists an element
x0 ∈ X with x0 4 fx0. Suppose that

d(fx, fy) 6 αd(x, y) + β
d(x, fx)d(y, fy)

1 + d(fx, fy)
+ γ

d(x, fx)d(y, fy)

1 + d(x, y)

+ δ
d(x, fx)d(x, fy)

1 + d(x, fy) + d(y, fx)

for all comparable elements x, y ∈ X , where α, β, γ, δ > 0 and α+ β + γ + δ < 1/s. If
f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X ,
one has xn 4 u for all n ∈ N, then f has a fixed point.
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Proof. Since

αd(x, y) + β
d(x, fx)d(y, fy)

1 + d(fx, fy)
+ γ

d(x, fx)d(y, fy)

1 + d(x, y)
+ δ

d(x, fx)d(x, fy)

1 + d(x, fy) + d(y, fx)

6 (α+ β + γ + δ)max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)
,
d(x, fx)d(y, fy)

1 + d(x, y)
,

d(x, fx)d(x, fy)

1 + d(x, fy) + d(y, fx)

}
,

taking r = α+ β+ γ+ δ, all the conditions of Corollary 1 hold, and hence, f has a fixed
point.

Corollary 3. Let (X,4, d) be a complete, totally ordered b-g.m.s. with parameter s, and
let f : X → X be an increasing mapping with respect to 4 such that there exists an
element x0 ∈ X with x0 4 fx0. Suppose that

d
(
fmx, fmy

)
6 β

(
M(x, y)

)
M(x, y)

for some β ∈ Fs and a positive integer m, and for all elements x, y ∈ X , where

M(x, y) = max

{
d(x, y),

d(x, fmx)d(y, fmy)

1 + d(fmx, fmy)
,
d(x, fmx)d(y, fmy)

1 + d(x, y)
,

d(x, fmx)d(x, fmy)

1 + d(x, fmy) + d(y, fmx)

}
.

If fm is continuous, or, for any nondecreasing sequence {xn} in X such that xn →
u ∈ X , one has xn 4 u for all n ∈ N, then f has a fixed point.

Proof. Since f is an increasing mapping with respect to 4, so, fm is also an increasing
mapping with respect to 4, and we have x0 4 fx0 4 f2x0 4 · · · 4 fmx0. Thus, all
conditions of Theorem 1 hold for fm, and it has a fixed point z ∈ X , i.e., fmz = z. Now
we show that fz = z. If, on the contrary, fz 6= z, then, since the order 4 is total, we have
z ≺ fz or fz ≺ z. If z ≺ fz, then we have z ≺ fz 4 f2z 4 · · · 4 fmz, a contradiction.
Similarly, for the case fz ≺ z, we can get a contradiction. So, f has a fixed point.

3.2 Results using comparison functions

Let Ψ denote the family of all nondecreasing and continuous functions ψ : [0,∞) →
[0,∞) such that limn→∞ ψn(t) = 0 for all t > 0, where ψn denotes the nth iterate of ψ.
It is easy to show that, for each ψ ∈ Ψ , the following is satisfied:

1. ψ(t) < t for all t > 0;
2. ψ(0) = 0.

Theorem 3. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s. Let f :X→X
be an increasing mapping with respect to 4 such that there exists an element x0 ∈ X with
x0 4 fx0. Suppose that

sd(fx, fy) 6 ψ
(
M(x, y)

)
, (5)
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where

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
for some ψ ∈ Ψ and for all elements x, y ∈ X with x, y comparable. If f is continuous,
then f has a fixed point. In addition, the set of fixed points of f is well ordered if and only
if f has one and only one fixed point.

Proof. We will deliver the proof for the case s > 1 (as noted before, the case when s = 1,
i.e., when (X, d) is a g.m.s., is easy and well known).

Since x0 4 fx0 and f is an increasing function, we obtain by induction that

x0 4 fx0 4 f2x0 4 · · · 4 fnx0 4 fn+1x0 4 · · · .

By letting xn = fnx0, we have

x0 4 x1 4 x2 4 · · · 4 xn 4 xn+1 4 · · · .

If there exists n0 ∈ N such that xn0
= xn0+1, then xn0

= fxn0
, and so, we have nothing

for prove. Hence, we assume that xn 6= xn+1 for all n ∈ N.

Step I. We will prove that limn→∞ d(xn, xn+1) = 0. Using condition (5), we obtain

sd(xn, xn+1) = sd(fxn−1, fxn) 6 ψ
(
M(xn−1, xn)

)
,

where

M(xn−1, xn) = max

{
d(xn−1, xn),

d(xn−1, fxn−1)d(xn, fxn)

1 + d(fxn−1, fxn)

}
= d(xn−1, xn).

Hence,

d(xn, xn+1) 6
1

s
ψ
(
d(xn−1, xn)

)
<

1

s
d(xn−1, xn).

By induction we get that

d(xn, xn+1) <
1

sn
d(x0, x1)→ 0 as n→∞.

It follows that
lim
n→∞

d(xn, xn+1) = 0. (6)

Step II. Suppose that xn = xm for some m,n ∈ N, m < n. Then

d(xm, xm+1) = d(xn, xn+1) 6 ψn−m
(
d(xm, xm+1)

)
< d(xm, xm+1),

a contradiction. Hence, all elements of the Picard sequence {xn} are distinct. Now we
will prove that {xn} is a b-g.m.s. Cauchy sequence. Suppose the contrary. Then there
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exists ε > 0 for which we can find two subsequences {xmi} and {xni} of {xn} such that
ni is the smallest index for which

ni > mi > i and d(xmi , xni) > ε. (7)

This means that
d(xmi

, xni−2) < ε. (8)

From (7) and using the b-rectangular inequality, we get

ε 6 d(xmi
, xni

) 6 sd(xmi
, xmi+1) + sd(xmi+1, xni−1) + sd(xni−1, xni

).

Taking the upper limit as i→∞, from (6) we get
ε

s
6 lim sup

i→∞
d(xmi+1, xni−1). (9)

From the definition of M(x, y) we have

M(xmi , xni−2) = max

{
d(xmi , xni−2),

d(xmi , fxmi)d(xni−2, fxni−2)

1 + d(fxmi
, fxni−2)

}
= max

{
d(xmi

, xni−2),
d(xmi

, xmi+1)d(xni−2, xni−1)

1 + d(xmi+1, xni−1)

}
,

and if i→∞, by (6) and (8) we have

lim sup
i→∞

M(xmi
, xni

) 6 ε.

Now, from (5) we have

sd(xmi+1, xni−1) = sd(fxmi , fxni−2) 6 ψ
(
M(xmi , xni−2)

)
.

Again, if i→∞, by (9) we obtain

ε = s · ε
s
6 s lim sup

i→∞
d(xmi+1, xni−1) 6 ψ(ε) < ε,

which is a contradiction. Consequently, {xn} is a b-g.m.s. Cauchy sequence inX . There-
fore, the sequence {xn} b-g.m.s. converges to some z ∈ X , that is, limn→∞ d(xn, z) = 0
for all a ∈ X .

Step III. Now, we show that z is a fixed point of f . Suppose, on the contrary, that
fz 6= z. Then, by Lemma 1, it follows that xn differs from both fz and z for n sufficiently
large. Using the b-rectangular inequality, we get

d(z, fz) 6 sd(z, fxn) + sd(fxn, fxn+1) + sd(fxn+1, fz).

Letting n→∞ and using the continuity of f , we get

d(z, fz) 6 0.

Hence, we have fz = z. Thus, z is a fixed point of f .
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Theorem 4. Under the hypotheses of Theorem 3, without the continuity assumption on f ,
assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X ,
one has xn 4 u for all n ∈ N. Then f has a fixed point.

Proof. Following the proof of Theorem 3, we construct an increasing sequence {xn} inX
such that xn → z ∈ X . Using the given assumption on X , we have xn 4 z. Now, we
show that z = fz. By (5) we have

sd(fz, xn) = sd(fz, fxn−1) 6 ψ
(
M(z, xn−1)

)
, (10)

where

M(z, xn−1) = max

{
d(z, xn−1),

d(z, fz)d(xn−1, fxn−1)

1 + d(fz, fxn−1)

}
.

Letting n→∞ in the above relation, we get

lim sup
n→∞

M(z, xn−1) = 0. (11)

Again, taking the upper limit as n→∞ in (10) and using Lemma 2 and (11), we get

s

[
1

s
d(z, fz)

]
6 s lim sup

n→∞
d(xn, fz) 6 lim sup

n→∞
ψ
(
M(z, xn−1)

)
= 0.

So, we get d(z, fz) = 0, i.e., fz = z.

3.3 Results for almost generalized weakly contractive mappings

Recall that Khan et al. introduced in [21] the concept of an altering distance function as
follows.

Definition 4. (See [21].) A function ϕ : [0,+∞) → [0,+∞) is called an altering dis-
tance function if the following properties hold:

1. ϕ is continuous and non-decreasing;
2. ϕ(t) = 0 if and only if t = 0.

So-called almost contractions were introduced by Berinde in [3] (see also [4]) and
later generalized and used in a lot of papers in various situations. We will use here the
following variant.

Definition 5. Let (X, d) be a b-g.m.s. with parameter s, and let f : X → X be a mapping.
For x, y ∈ X , set

M(x, y) = max
{
d(x, y), d(x, fx), d(y, fy)

}
and

N(x, y) = min
{
d(x, fx), d(x, fy), d(y, fx), d(y, fy)

}
.

http://www.mii.lt/NA



New fixed point results in b-rectangular metric spaces 627

We say that f is an almost generalized (ψ,ϕ)s-contractive mapping if there exist L > 0
and two altering distance functions ψ and ϕ such that

ψ
(
sd(fx, fy)

)
6 ψ

(
M(x, y)

)
− ϕ

(
M(x, y)

)
+ Lψ

(
N(x, y)

)
(12)

for all x, y ∈ X .

Now, let us prove our new result.

Theorem 5. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s. Let f :
X → X be a continuous mapping, which is non-decreasing with respect to 4. Suppose
that f satisfies condition (12) for all elements x, y ∈ X with x, y comparable. If there
exists x0 ∈ X such that x0 4 fx0, then f has a fixed point. Moreover, the set of fixed
points of f is well ordered if and only if f has one and only one fixed point.

Proof. Starting with the given x0, define a sequence {xn} in X such that xn+1 = fxn
for all n > 0. Since x0 4 fx0 = x1 and f is non-decreasing, we have x1 = fx0 4 x2 =
fx1, and, by induction,

x0 4 x1 4 · · · 4 xn 4 xn+1 4 · · · .

We will again assume that s > 1 and that xn 6= xn+1 for each n ∈ N. By (12) we have

ψ
(
sd(xn, xn+1)

)
= ψ

(
sd(fxn−1, fxn)

)
6 ψ

(
M(xn−1, xn)

)
− ϕ

(
M(xn−1, xn)

)
+ Lψ

(
N(xn−1, xn)

)
, (13)

where

M(xn−1, xn) = max
{
d(xn−1, xn), d(xn−1, fxn−1), d(xn, fxn)

}
= max

{
d(xn−1, xn), d(xn, xn+1)

}
(14)

and

N(xn−1, xn) = min
{
d(xn−1, fxn−1), d(xn−1, fxn), d(xn, fxn−1), d(xn, fxn)

}
= min

{
d(xn−1, xn), d(xn−1, xn+1), 0, d(xn, xn+1)

}
= 0. (15)

From (13)–(15) and the properties of ψ and ϕ we get

ψ
(
sd(xn, xn+1)

)
< ψ

(
max

{
d(xn−1, xn), d(xn, xn+1)

})
,

i.e.,

d(xn, xn+1) <
1

s
max

{
d(xn−1, xn), d(xn, xn+1)

}
. (16)

If
max

{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1),
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then we get d(xn, xn+1) < d(xn, xn+1)/s, a contradiction. Hence,

max
{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn−1, xn),

therefore, (16) becomes

d(xn, xn+1) <
1

s
d(xn−1, xn).

Now,
lim
n→∞

d(xn, xn+1) = 0 (17)

follows in the same way as in the proof of Theorem 1.
Also, again similarly as in the proof of Theorem 1, in what follows, we can assume

that xn 6= xm for n 6= m.
Next, we show that {xn} is a b-g.m.s. Cauchy sequence in X . Suppose the contrary,

that is, {xn} is not a Cauchy sequence. Then there exists ε > 0 for which we can find
two subsequences {xmi

} and {xni
} of {xn} such that ni is the smallest index for which

ni > mi > i and (xmi
, xni

) > ε. (18)

This means that
d(xmi

, xni−2) < ε. (19)

Using (19) and taking the upper limit as i→∞, we get

lim sup
i→∞

d(xmi
, xni−2) 6 ε. (20)

On the other hand, we have

d(xmi
, xni

) 6 sd(xmi
, xmi+1) + sd(xmi+1, xni−1) + sd(xni−1, xni

).

Using (17), (18) and taking the upper limit as i→∞, we get

ε

s
6 lim sup

i→∞
d(xmi+1, xni−1). (21)

Using the b-rectangular inequality once again, we have the following inequalities:

d(xmi
, xni

) 6 sd(xmi
, xni−2) + sd(xni−2, xni−1) + sd(xni−1, xni

).

Using (17), (18) and taking the upper limit as i→∞, we get

ε

s
6 lim sup

i→∞
d(xmi

, xni−2). (22)

From (12) we have

ψ
(
sd(xmi+1, xni−1)

)
= ψ

(
sd(fxmi

, fxni−2)
)

6 ψ(M(xmi
, xni−2))− ϕ

(
M(xmi

, xni−2)
)

+ Lψ
(
N(xmi , xni−2)

)
, (23)
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where

M(xmi , xni−2) = max
{
d(xmi , xni−2), d(xmi , fxmi), d(xni−2, fxni−2)

}
= max

{
d(xmi , xni−2), d(xmi , xmi+1), d(xni−2, xni−1)

}
, (24)

and

N(xmi
, xni−2)

= min
{
d(xmi

, fxmi
), d(xmi

, fxni−2), d(xni−2, fxmi
), d(xni−2, fxni−2)

}
= min

{
d(xmi

, xmi+1), d(xmi
, xni−1), d(xni−2, xmi+1), d(xni−2, xni−1)

}
. (25)

Taking the upper limit as i→∞ in (24) and (25) and using (17), (20), we get

lim sup
i→∞

M(xmi
, xni−2) = max

{
lim sup
i→∞

d(xmi
, xni−2), 0, 0

}
6 ε.

So, we have

lim sup
i→∞

M(xmi
, xni−2) 6 ε (26)

and
lim sup
i→∞

N(xmi
, xni−2) = 0. (27)

Similarly, by taking the lower limit as i→∞ in (24) and using (17), (22), we get

ε

s
6 lim inf

i→∞
M(xmi , xni−2). (28)

Now, taking the upper limit as i→∞ in (23) and using (21), (26) and (27), we have

ψ

(
s · ε

s

)
6 ψ

(
s lim sup

i→∞
d(xmi+1, xni−1)

)
6 ψ

(
lim sup
i→∞

M(xmi , xni−2)
)
− lim inf

i→∞
ϕ
(
M(xmi , xni−2)

)
6 ψ(ε)− ϕ

(
lim inf
i→∞

M(xmi
, xni−2)

)
,

which further implies that

ϕ
(
lim inf
i→∞

M(xmi
, xni−2)

)
= 0,

so, lim infi→∞M(xmi , xni−2) = 0, a contradiction with (28). Thus, {xn+1 = fxn} is
a b-g.m.s.-Cauchy sequence in X .

As X is complete, there exists u ∈ X such that xn → u as n→∞, that is,

lim
n→∞

xn+1 = lim
n→∞

fxn = u.
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Now, suppose that f is continuous. We show that u is a fixed point of f . Suppose, on the
contrary, that fu 6= u. Then, by Lemma 1, it follows that xn differs from both fu and u
for n sufficiently large. Using the b-rectangular inequality, we get

d(u, fu) 6 sd(u, fxn) + sd(fxn, fxn+1) + sd(fxn+1, fu).

Letting n→∞, we get
d(u, fu) 6 0.

So, we have fu = u. Thus, u is a fixed point of f .

As in some earlier results, the continuity of f can be replaced by another condition.

Theorem 6. Under the hypotheses of Theorem 5, without the continuity assumption on f ,
assume that whenever {xn} is a non-decreasing sequence in X such that xn → x ∈ X ,
one has xn 4 x, for all n ∈ N. Then f has a fixed point in X .

Proof. Following similar arguments to those given in the proof of Theorem 5, we con-
struct an increasing sequence {xn} in X such that xn → u for some u ∈ X . Using the
assumption on X , we have that xn 4 u for all n ∈ N. Now, we show that fu = u. By
(12) we have

ψ
(
sd(xn+1, fu)

)
= ψ

(
sd(fxn, fu)

)
6 ψ

(
M(xn, u)

)
− ϕ

(
M(xn, u)

)
+ Lψ

(
N(xn, u)

)
, (29)

where
M(xn, u) = max

{
d(xn, u), d(xn, fxn), d(u, fu)

}
= max

{
d(xn, u), d(xn, xn+1), d(u, fu)

}
(30)

and
N(xn, u) = min

{
d(xn, fxn), d(xn, fu), d(u, fxn), d(u, fu)

}
= min

{
d(xn, xn+1), d(xn, fu), d(u, xn+1), d(u, fu)

}
. (31)

Letting n→∞ in (30) and (31), we get

M(xn, u)→ d(u, fu) (32)
and

N(xn, u)→ 0.

Again, taking the upper limit as i→∞ in (29) and using Lemma 2 and (32), we get

ψ
(
d(u, fu)

)
= ψ

(
s · 1

s
d(u, fu)

)
6 ψ

(
s lim sup

n→∞
d(xn+1, fu)

)
6 ψ

(
lim sup
n→∞

M(xn, u)
)
− lim inf

n→∞
ϕ
(
M(xn, u)

)
6 ψ

(
d(u, fu)

)
− ϕ

(
lim inf
n→∞

M(xn, u)
)
.

Therefore, ϕ(lim infn→∞M(xn, u)) 6 0, equivalently, lim infn→∞M(xn, u) = 0.
Thus, from (32) we get u = fu, and hence, u is a fixed point of f .
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Corollary 4. Let (X,4, d) be a complete ordered b-g.m.s. with parameter s. Let f :
X → X be a non-decreasing continuous mapping with respect to 4. Suppose that there
exist k ∈ [0, 1) and L > 0 such that

d(fx, fy) 6
k

s
max

{
d(x, y), d(x, fx), d(y, fy)

}
+
L

s
min

{
d(x, fx), d(x, fy), d(y, fx), d(y, fy)

}
(33)

for all elements x, y ∈ X with x, y comparable. If there exists x0 ∈ X such that x0 4
fx0, then f has a fixed point provided that

(a) f is continuous, or
(b) for any non-decreasing sequence {xn} in X such that xn → x ∈ X , we have

xn 4 x for all n ∈ N.

Proof. By choosing ψ(t) = t and ϕ(t) = (1 − k)t, the desired result can be obtained
from Theorems 5 and 6.

The following example, which demonstrates the usage of previous results, is inspired
by [12, Ex. 3.5].

Example 4. Consider the set X = A ∪ [1, 2], where A = {0, 1/2, 1/3, 1/4, 1/5, 1/6}
endowed with the order defined as follows:

t 4
1

3
4

1

6
4

1

5
4

1

2
4 0 4

1

4
for all t ∈ [1, 2].

Define d : X ×X → [0,+∞) as follows:

d

(
0,

1

2

)
= d

(
1

3
,
1

4

)
= d

(
1

5
,
1

6

)
= 0.09,

d

(
0,

1

3

)
= d

(
1

2
,
1

5

)
= d

(
1

4
,
1

5

)
= 0.04,

d

(
0,

1

4

)
= d

(
1

2
,
1

3

)
= d

(
1

4
,
1

6

)
= 0.16,

d

(
0,

1

5

)
= d

(
1

2
,
1

6

)
= d

(
1

3
,
1

6

)
= 0.25,

d

(
0,

1

6

)
= d

(
1

2
,
1

4

)
= d

(
1

3
,
1

5

)
= 0.36,

d(x, x) = 0 and d(x, y) = d(y, x) for x, y ∈ X,
d(x, y) = (x− y)2 if {x, y} ∩ [1, 2] 6= ∅.

Obviously, (X, d) is neither a metric, nor a generalized metric space. However, it is
a b-g.m.s. with s = 3 (for example, d(1, 2) = 1 = 3(1/9 + 1/9 + 1/9) = 3(d(1, 4/3) +
d(4/3, 5/3) + d(5/3, 2))).
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Consider now the mapping f : X → X given as

fx =


1/6 if x ∈ [1, 2],

1/4 if x ∈ A \ {1/3},
1/5 if x = 1/3.

It is easy to check that f is increasing w.r.t. 4 and that there exists x0 ∈ X such that
x0 4 fx0. In order to show that the contractive condition (33) is fulfilled with k = 16/23,
denote by R the right-hand side of this condition and consider the following possibilities:

1. x ∈ [1, 2], y ∈ A \ {1/3}. Then fx = 1/6, fy = 1/4, M(x, y) > d(x, fx) >
(5/6)2 > 0.69 and

d(fx, fy) = 0.16 =
1

3
· 16
23
· 0.69 < R.

2. x ∈ [1, 2], y = 1/3. Then fx = 1/6, fy = 1/5, M(x, y) > 0.69 and

d(fx, fy) = 0.09 <
1

3
· 16
23
· 0.69 < R.

3. x ∈ A \ {1/3}, y = 1/3, fx = 1/4, fy = 1/5, M(x, y) = 0.36 and

d(fx, fy) = 0.04 <
1

3
· 16
23
· 0.36 6 R.

Hence, all the conditions of Corollary 4 are satisfied and f has a unique fixed point
(which is u = 1/4).

Remark. Added in proof: During the revision process we have learned that b-g.m.s. were
also introduced and some fixed point results (under different conditions than here) were
obtained in the (now published) papers [8, 10, 11].
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type spaces, Fixed Point Theory Appl., 2012:126, 2012.

15. N. Hussain, V. Parvaneh, J.R. Roshan, Z. Kadelburg, Fixed points of cyclic (ψ,ϕ, L,A,B)-
contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl.,
2013:256, 2013.

16. N. Hussain, J.R. Roshan, V. Parvaneh, M. Abbas, Common fixed point results for weak
contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl.,
2013:486, 2013.

17. N. Hussain, R. Saadati, R.P. Agarwal, On the topology and wt-distance on metric type spaces,
Fixed Point Appl., 2014:88, 2014.

18. M. Jleli, B. Samet, The Kannan fixed point theorem in a cone rectangular metric space,
J. Nonlinear Sci. Appl., 2:161–167, 2009.
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