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Abstract. We consider a nonlinear two-dimensional boundary value problem which models the
frictional contact of a bar with a rigid obstacle. The weak formulation of the problem is in the form
of an elliptic variational inequality of the second kind. We establish the existence of a unique weak
solution to the problem, then we introduce a regularized version of the variational inequality for
which we prove existence, uniqueness, and convergence results. We proceed with an optimal control
problem for which we prove the existence of an optimal pair. Finally, we consider the corresponding
optimal control problem associated to the regularized variational inequality and prove a convergence
result.
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1 Introduction

In this paper, we deal with the variational analysis and the optimal control of a nonlin-
ear elliptic boundary value problem. The problem is formulated in the two dimensional
rectangular Ω = (0, L) × (−h, h), where L and h are given positive constants. We use
x and y for the spatial variables, and the subscripts will represent partial derivatives, i.e.,
ux = ∂u/∂x, uy = ∂u/∂y, and uxy = ∂2u/(∂x∂y). Moreover, E, G, and µ are given
constants, and f , q are given real-valued functions defined on [0, L]. Then the problem
under consideration is the following.

Problem P: Find two functions u = u(x, y) : [0, L] × [−h, h] → R and w = w(x) :
[0, L]→ R such that

Euxx(x, y) +Guyy(x, y) = 0 ∀(x, y) ∈ Ω, (1)

Gwxx(x) + (E −G)uxy(x, y) = 0 ∀(x, y) ∈ Ω, (2)
u(0, y) = w(0) = 0 ∀y ∈ [−h, h], (3)
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G
(
uy(x, h) + wx(x)

)
= q(x) ∀x ∈ [0, L], (4)

(E − 2G)ux(x, h) = f(x) ∀x ∈ [0, L], (5)

u(L, y) = 0 ∀y ∈ [−h, h], (6){
|uy(L, y) + wx(L)| 6 µ,

uy(L, y) + wx(L) = −µ w(L)
|w(L)| if w(L) 6= 0

∀y ∈ [−h, h], (7)

ux(x,−h) = 0 ∀x ∈ [0, L], (8)

uy(x,−h) + wx(x) = 0 ∀x ∈ [0, L]. (9)

Problem P represents a mathematical model which describes the deformation of an
elastic bar in frictional contact with a rigid foundation. HereΩ represents the cross section
of the bar, u is the horizontal displacement, and w denotes the vertical displacement of
the central axis of the bar. The bar is clamped on {0}× [−h, h], and its top [0, L]×{h} is
submitted to the traction f = (q, f). Moreover, the bar is in frictional contact with a rigid
obstacle on {L} × [−h, h] and could be either in slip or stick status on this part of its
boundary. In addition, its bottom [0, L] × {−h} is traction free. The physical setting is
depicted in Fig. 1.

The equations and boundary conditions (1)–(9) can be derived from the physical
setting described above by using the arguments used in [23]. Here we restrict ourselves
to provide the following brief description of them. First, equations (1) and (2) represent
the equilibrium equations in which E and G are positive elastic coefficients, the Young
modulus and the shear modulus, respectively. Note that in these equations, the body forces
are neglected for simplicity. Condition (3) is the displacement condition which shows that
the bar is fixed on the boundary x = 0. Next, conditions (4), (5) represent the traction
conditions where, recall, the functions q : [0, L] → R and f : [0, L] → R denote the
horizontal and the vertical components of the traction which acts on the top y = h of the
bar. Condition (6) represents the bilateral contact condition at x = L, and (7) represents
the Tresca friction law. Here µ denotes a positive constant, and µG represents the friction
bound. Finally, conditions (8), (9) show that the bottom of the bar, x = −h, is free of
traction.

Figure 1. The cross section of the bar.
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Note that similar models of contact have been considered in [4, 23] in the quasistatic
case and in [21] in the static case. The results in [23] concern the derivation of the
governing equations and boundary conditions, starting from the corresponding fully three-
dimensional problem. They also concern the weak solvability of the problem based on
arguments of evolutionary quasivariational inequalities. This study was completed in [4],
where numerical simulations which illustrate the behavior of the solution were provided.
The model considered in [21] was frictionless, and the contact was with both the nor-
mal compliance and the Signorini condition. There the unique weak solvability of the
problem was proved together with the existence of a solution to an associated optimal
control problem; various convergence results which show the continuous dependence of
the weak solution with respect the set of constraints were also provided. General results
on modeling and analysis of contact problems can be found in [8,13,15,16,19,22] in the
three-dimentional case. Existence and uniqueness results for contact problems with thin
structures like beams and bars were obtained, for instance, in [1, 3, 9, 10, 20]. Results
on optimal control for various contact problems with elastic materials could be find
in [2, 5, 6, 11, 12, 24] and the references therein. The literature on nonlinear problems
also includes the papers [17] and [18]. They concern the analytic solution of the three-
dimensional Navier–Stokes equation for the flow near an infinite rotating disk and the
study of nonlinear vibration of Von Karman rectangular plates, respectively.

The rest of paper is structured as follows. In Section 2, we list the assumptions on the
data and derive the variational formulation of Problem P , denoted PV . Then we prove
an existence and uniqueness result, Theorem 1. In Section 3, we introduce a regularized
version of the problem, denoted PεV , for which we prove an existence, uniqueness, and
convergence result, Theorem 2. In Section 4, we state and prove the solvability of an
optimal control problem, Theorem 3, associated to Problem PV . Finally, in Section 5, we
consider the corresponding optimal control problem associated to the regularized problem
(Problem PεV ) for which we prove an existence and convergence result, Theorem 4.

2 An existence and uniqueness result

Everywhere below, we use standard notation for Sobolev and Lebesgue spaces. In addi-
tion, we consider the spaces

V =
{
u ∈ H1(Ω): u(0, ·) = 0, u(L, ·) = 0

}
,

W =
{
w ∈ H1(0, L): w(0) = 0

}
,

which are real Hilbert spaces with the cannonical inner products given by

(u, ψ)V =

∫∫
Ω

(uψ + uxψx + uyψy) dxdy ∀u, ψ ∈ V, (10)

(w,ϕ)W =

L∫
0

(wϕ+ wxϕx) dx ∀w,ϕ ∈W. (11)
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Note that, in (10)–(11) and below, when no confusion arises, we skip the dependence of
various functions on the spatial variables x and y.

Let X = V × W be the product Hilbert space, i.e., X is endowed with the inner
product

(u,v)X = (u, ψ)V + (w,ϕ)W ∀u = (u,w), v = (ψ,ϕ) ∈ X. (12)

The corresponding norms on the spaces V , W , and X are denoted by ‖·‖V , ‖·‖W , and
‖·‖X , respectively. Therefore,

‖u‖2X = ‖u‖2V + ‖w‖2W ∀u = (u,w) ∈ X. (13)

The following elementary inequalities are valid for all u = (u,w) ∈ X and will be
repeatedly used in various places below:

‖w‖L2(0,L) 6 ‖u‖X , (14)∣∣w(L)∣∣ 6 d0‖u‖X with d0 > 0. (15)

Note that inequality (15) represents a consequence of the Sobolev trace theorem.
Next, we consider the product Hilbert space Y = L2(0, L) × L2(0, L) endowed

with the cannonical inner product (·, ·)Y and the associated norm ‖·‖Y . We denote by
π : X → Y the operator defined by

πv = (ψh, ϕ) ∀v = (ψ,ϕ) ∈ X, (16)

where ψh represents the trace of the function ψ ∈ H1(Ω) to the boundary y = h,
i.e., ψh(x) = ψ(x, h), a.e. x ∈ (0, L). Note that π is a linear continuous operator, and
therefore, there exists a constant c0 > 0 such that

‖πv‖Y 6 c0‖v‖X ∀v ∈ X. (17)

Moreover, the compactness of the trace operator combined with the compactness of the
embedding H1(0, L) ⊂ L2(0, L) imply that π is a weakly-strongly continuous operator,
i.e.,

vn ⇀ v in X =⇒ πvn → πv in Y. (18)

Here and everywhere in the rest of the paper, we denote by→ and ⇀ the strong and weak
convergence on various Hilbert spaces, respectively.

We now consider the following assumptions on the data of Problem P:

E > 0, G > 0, µ > 0, (19)

f = (q, f) ∈ Y. (20)

Under these assumptions, we denote g = 2hµG, and we define the operator
A : X → X and the functional j : X → R by equalities

(Au,v)X = E

∫∫
Ω

uxψx dxdy +G

∫∫
Ω

(uy + wx)(ψy + ϕx) dxdy, (21)

j(v) = g
∣∣ϕ(L)∣∣ (22)
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for all u = (u,w), v = (ψ,ϕ) ∈ X . Moreover, we note that definition (16) yields

(f , πv)Y =

L∫
0

qψh dx+

L∫
0

fϕdx ∀v = (ψ,ϕ) ∈ X. (23)

Note that, in general, Problem P does not have solution. Therefore, as usual in the
study of contact problems, we shall replace it with a new formulation, the so-called
variational formulation. The importance of variational formulations is widely recognized
in contact mechanics since, besides their unique solvability, they lead directly to finite
element approximations for the corresponding contact models.

To derive the variational formulation of Problem P , we assume in what follows that
u = (u(x, y), w(x)) represents a regular solution to this problem, and we consider an
arbitrary element v = (ψ(x, y), ϕ(x)) ∈ X . We multiply (1) by (ψ−u), then we integrate
the result over Ω to obtain∫∫

Ω

Euxx(x, y)
(
ψ(x, y)− u(x, y)

)
dxdy

+

∫∫
Ω

Guyy(x, y)
(
ψ(x, y)− u(x, y)

)
dxdy = 0.

Next, we use Green’s formula, the boundary condition (3), (6), and the definition of the
space V to deduce that

E

∫∫
Ω

ux(x, y)
(
ψx(x, y)− ux(x, y)

)
dxdy

+G

∫∫
Ω

uy(x, y)
(
ψy(x, y)− uy(x, y)

)
dxdy

= −G
L∫

0

uy(x,−h)
(
ψ(x,−h)− u(x,−h)

)
dx

+G

L∫
0

uy(x, h)
(
ψ(x, h)− u(x, h)

)
dx. (24)

To proceed, we multiply equality (2) by (ϕ − w) and integrate the result over Ω to
find that ∫∫

Ω

Gwxx(x)
(
ϕ(x)− w(x)

)
dx dy

+

∫∫
Ω

(E −G)uxy(x, y)
(
ϕ(x)− w(x)

)
dxdy = 0.
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We now perform integration by parts, and we use the boundary condition (3) to obtain
that

G

∫∫
Ω

wx(x)
(
ϕx(x)− wx(x)

)
dxdy

+

∫∫
Ω

(E −G)uy(x, y)
(
ϕx(x)− wx(x)

)
dxdy

−G
h∫
−h

wx(L)
(
ϕ(L)− w(L)

)
dy

− (E −G)
h∫
−h

uy(L, y)
(
ϕ(L)− w(L)

)
dy = 0. (25)

Next, we use the boundary condition (7) to see that

G
(
uy(L, y) + wx(L)

)(
ϕ(L)− w(L)

)
> µG

∣∣w(L)∣∣− µG∣∣ϕ(L)∣∣ ∀y ∈ [−h, h].

Thus, using notation g = 2hµG and (22) yields

G

h∫
−h

(
uy(L, y) + wx(L)

)(
ϕ(L)− w(L)

)
dy > j(u)− j(v),

which implies that

G

h∫
−h

uy(L, y)
(
ϕ(L)− w(L)

)
dy + j(v)− j(u)

> −G
h∫
−h

wx(L)
(
ϕ(L)− w(L)

)
dy. (26)

Therefore, combining (25) and (26), we obtain that

G

∫∫
Ω

(
wx(x) + uy(x, y)

)(
ϕx(x)− wx(x)

)
dxdy

+ (E − 2G)

∫∫
Ω

uy(x, y)
(
ϕx(x)− wx(x)

)
dxdy

− (E − 2G)

h∫
−h

uy(L, y)
(
ϕ(L)− w(L)

)
dy + j(v)− j(u) > 0. (27)
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We now add inequality (24) and equality (27) to find that

E

∫∫
Ω

ux(x, y)
(
ψx(x, y)− ux(x, y)

)
dxdy

+G

∫∫
Ω

(
wx(x) + uy(x, y)

)(
ϕx(x)− wx(x)

)
dx dy

+G

∫∫
Ω

uy(x, y)
(
ψy(x, y)− uy(x, y)

)
dxdy

+G

L∫
0

uy(x,−h)
(
ψ(x,−h)− u(x,−h)

)
dx

+ (E − 2G)

∫∫
Ω

uy(x, y)
(
ϕx(x)− wx(x)

)
dx dy

− (E − 2G)

h∫
−h

uy(L, y)
(
ϕ(L)− w(L)

)
dy + j(v)− j(u)

> G

L∫
0

uy(x, h)
(
ψ(x, h)− u(x, h)

)
dy. (28)

Next, we use the boundary condition (4) to see that

G

L∫
0

uy(x, h)
(
ψ(x, h)− u(x, h)

)
dx

=

L∫
0

(
q(x)−Gwx(x)

)(
ψ(x, h)− u(x, h)

)
dx. (29)

In addition, we remark that

(E − 2G)

∫∫
Ω

uy(x, y)
(
ϕx(x)− wx(x)

)
dxdy

− (E − 2G)

h∫
−h

uy(L, y)
(
ϕ(L)− w(L)

)
dy

= −(E − 2G)

∫∫
Ω

uxy(x, y)
(
ϕ(x)− w(x)

)
dxdy. (30)
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We now substitute equalities (29) and (30) in (28) to deduce that

E

∫∫
Ω

ux(x, y)
(
ψx(x, y)− ux(x, y)

)
dxdy

+G

∫∫
Ω

(
wx(x) + uy(x, y)

)(
ϕx(x)− wx(x)

)
dx dy

+G

∫∫
Ω

uy(x, y, t)
(
ψy(x, y)− uy(x, y)

)
dx dy

+G

L∫
0

uy(x,−h)
(
ψ(x,−h)− u(x,−h)

)
dx

+G

L∫
0

wx(x)
(
ψ(x, h)− u(x, h)

)
dx

− (E − 2G)

∫∫
Ω

uxy(x, y)
(
ϕ(x)− w(x)

)
dxdy + j(v)− j(u)

>

L∫
0

q(x)
(
ψ(x, h)− u(x, h)

)
dx. (31)

On the other hand, an elementary calculus shows us that

(E − 2G)

∫∫
Ω

uxy(x, y)
(
ϕ(x)− w(x)

)
dx dy

= (E − 2G)

L∫
0

ux(x, h)
(
ϕ(x)− w(x)

)
dx

− (E − 2G)

L∫
0

ux(x,−h)
(
ϕ(x)− w(x)

)
dx.

Then we use the boundary conditions (5) and (8) to see that∫∫
Ω

(E − 2G)uxy(x, y)
(
ϕx(x)− wx(x)

)
dxdy

=

L∫
0

f(x)
(
ϕ(x)− w(x)

)
dx. (32)
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We now combine inequality (31) and equalities (32), (23) to obtain that

E

∫∫
Ω

ux(x, y)
(
ψx(x, y)− ux(x, y)

)
dxdy

+G

∫∫
Ω

(
wx(x) + uy(x, y)

)(
ϕx(x)− wx(x)

)
dxdy

+G

∫∫
Ω

uy(x, y)
(
ψy(x, y)− uy(x, y)

)
dx dy

+G

L∫
0

uy(x,−h)
(
ψ(x,−h)− u(x,−h)

)
dx

+G

L∫
0

wx(x)
(
ψ(x, h)− u(x, h)

)
dx+ j(v)− j(u)

> (f , πv − πu)Y . (33)

Next, we use the boundary condition (9) to see that

G

L∫
0

wx(x)
(
ψ(x, h)− u(x, h)

)
dx

= G

∫∫
Ω

wx(x)
(
ψy(x, y)− uy(x, y)

)
dxdy

−G
L∫

0

uy(x,−h)
(
ψ(x,−h)− u(x,−h)

)
dx. (34)

We now substitute (34) in (33), then we use definition (21) of the operatorA to deduce
that

(Au,v − u)X + j(v)− j(u) > (f , πv − πu)Y . (35)

Finally, we use the boundary conditions (3), (6) and the definition of the spaces V ,
W , and X to see that u ∈ X . We combine this inclusion with inequality (35) to obtain
the following variational formulation of Problem P .

Problem PV : Find u = (u,w) ∈ X such that

(Au,v − u)X + j(v)− j(u) > (f , πv − πu)Y ∀v ∈ X. (36)

The unique solvability of Problem PV is provided by the following result.

Theorem 1. Assume that (19) and (20) hold. Then Problem PV has a unique solution.

Nonlinear Anal. Model. Control, 22(6):841–860
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Proof. Let u = (u,w) ∈ X . Then, using definition (21), it follows that

(Au,u)X > min (E, 2G)

∫∫
Ω

(
u2x +

1

2
(uy + wx)

2

)
dxdy. (37)

Next, we claim that there exists a constant cK > 0, which depends on Ω, such that∫∫
Ω

(
u2x +

1

2
(uy + wx)

2

)
dxdy

> cK

∫∫
Ω

(
u2 + u2x + u2y + w2 + w2

x

)
dxdy. (38)

This inequality is a direct consequence of the well-known Korn’s inequality. Nevertheless,
for the convenience of the reader, we prove the claim, and, to this end, we consider in what
follows an arbitrary element u = (u(x, y), w(x)) ∈ X . Then the linearized strain tensor
associated with the two-dimensional displacement field u is given by

ε(u) =

(
ux

1
2 (uy + wx)

1
2 (uy + wx) 0

)
.

Denote by · and ‖·‖ the inner product and the Euclidean norm in the space of the second-
order symmetric tensors on R2. Then∥∥ε(u)∥∥2 = ε(u) · ε(u) = u2x +

1

2
(uy + wx)

2 a.e. on Ω. (39)

Note also that the function u vanishes on the part of Γ characterized by x = 0 which
is, obviously, of positive one-dimensional measure. Therefore, we are in a position to use
Korn’s inequality, which states that there exists a constant cK > 0, which depends on h,
such that ∫∫

Ω

∥∥ε(u)∥∥2 dxdy > cK‖u‖2H1(Ω)2 . (40)

For a proof of Korn’s inequality (40), see, for instance, [14, p. 79]). We now combine (39)
and (40) to deduce that (38) holds. Therefore, using (10)–(13), we obtain that∫∫

Ω

(
u2x +

1

2
(uy + wx)

2

)
dx dy > c̃K‖u‖2X , (41)

where c̃K = cK min(2h, 1). We now combine (37) and (41) to find that

(Au,u)X > m‖u‖2X (42)

with m = c̃K min (E, 2G) > 0. On the other hand, using again definition (21), it follows
that

(Au,v)X 6M‖u‖X‖v‖X ∀v ∈ X, (43)
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where M is a positive constant, i.e., M > 0. We now take v = Au in (43) to find that the
operator A satisfies condition

‖Au‖X 6M‖u‖X ∀u ∈ X. (44)

Recall that A is a linear operator. Then inequalities (42) and (44) show that

A : X → X is a positively defined linear continuous operator. (45)

Next, we use assumption (19) to see that g = 2hµG > 0. Therefore, by definition (22)
and the continuity of trace, (15), we deduce that

j : X → R+ is a continuous seminorm. (46)

Finally, using assumption (20) and the Riesz representation theorem, we deduce that
there exists a unique element f̃ ∈ X such that

(f̃ ,v)X = (f , πv)Y ∀v ∈ X. (47)

Theorem 1 is a direct consequence of (45)–(47) which allow to apply a standard existence
and uniqueness result for elliptic variational inequalities (see [22, p. 40] for instance).

A pair of functions u = (u,w) ∈ X which solves Problem PV is called a weak
solution for the contact problem. We conclude from here that Theorem 1 provides the
unique weak solvability of Problem P .

3 Regularization

We assume in what follows that (19) and (20) hold, and we denote by u = (u,w) the
solution of Problem PV obtained in Theorem 1. Let ε denote a positive parameter which
will converge to zero. We define the functional jε : X → R by

jε(v) = g
(√

ϕ2(L) + ε2 − ε
)
∀v = (ψ,ϕ) ∈ X, (48)

and we consider the following regularized version of Problem PV .

Problem PεV : Find uε = (uε, wε) ∈ X such that

(Auε,v − uε)X + jε(v)− jε(uε) > (f , πv − πuε)Y ∀v ∈ X. (49)

Note that, from mechanical point of view, Problem PεV represents the variational
formulation of the contact problem (1)–(9) in which the Tresca friction law (7) was
replaced by its regularization

uy(L, y) + wx(L) = −µ
(√

w(L)2 + ε2 − ε
)
.

Nonlinear Anal. Model. Control, 22(6):841–860
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Such regularization are commonly used in the study of frictional contact problems mainly
for numerical reasons. Indeed, since functional (48) is differentiable onX , inequality (49)
is equivalent with the nonlinear variational equation

(Auε,v)X +
(
∇jε(u),v

)
X

= (f , πv)Y ∀v ∈ X, (50)

where ∇jε : X → X denotes the gradient of jε. The numerical treatment of (50) could
be done by using various methods as explained in [7] and the references therein.

Our main result in this section is the following.

Theorem 2. Assume that (19) and (20). Then:

(i) For each ε > 0, Problem PεV has a unique solution uε = (uε, wε).
(ii) The solution uε of Problem PεV converges to the solution u of Problem PV , i.e.,

uε → u in X as ε→ 0. (51)

Proof. (i) Let ε > 0. We note that functional (48) is convex. Moreover, using the elemen-
tary inequality ∣∣√a2 + ε2 −

√
b2 + ε2

∣∣ 6 |a− b| ∀a, b ∈ R

combined with the trace inequality (15), we deduce that∣∣jε(u)− jε(v)∣∣ 6 d0g‖u− v‖X ∀u,v ∈ X,

which shows that the functional jε is continuous. In addition, recall that A satisfies
condition (45), and moreover, (47) holds. The unique solvability of Problem PεV follows
from a standard result on elliptic variational inequalities (see, for instance, [22, p.40]).

(ii) Let ε > 0. We take v = uε in (36) and v = u in (49), then we add the resulting
inequalities to obtain that

(Auε −Au,uε − u)X 6 jε(u)− jε(uε) + j(uε)− j(u).

Next, using inequality (42), it follows that

m‖uε − u‖2X 6 jε(u)− jε(uε) + j(uε)− j(u). (52)

On the other hand, the elementary inequality∣∣√a2 + ε2 − |a|
∣∣ 6 ε ∀a ∈ R

combined with the trace inequality (15) yields

jε(u)− jε(uε) + j(uε)− j(u) 6 2d0gε. (53)

The convergence result (51) is now a consequence of inequalities (52) and (53) which
concludes the proof.
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Remark 1. A carefully examination of the proof of Theorem 2 reveals that the conver-
gence result (51) can be extended in the following way: let fε ∈ Y , and let uε = uε(fε),
ũε = u(fε) ∈ X be the solutions of the variational inequalities

(Auε,v − uε)X + jε(v)− jε(uε) > (fε, πv − πuε)Y ∀v ∈ X,
(Aũε,v − ũε)X + jε(v)− jε(ũε) > (fε, πv − πũε)Y ∀v ∈ X.

Then
‖uε − ũε‖2X → 0 as ε→ 0.

We shall use this result in Section 5 in the following form:

uε(fε)− u(fε)→ 0X in X as ε→ 0 ∀fε ∈ Y. (54)

In addition to the mathematical interest in the convergence result (51), it is important
from the mechanical point of view since is shows that the weak solution of the contact
problem (Problem P) can be approached by the weak solution of a regularized frictional
contact problem as the regularization parameter converges to zero.

4 An optimal control problem

In this section, we consider an optimal control problem associated to Problem PV , and, to
this end, everywhere below, we denote byX×Y the product Hilbert space equipped with
the canonical inner product. Moreover, we assume that (19) and (20) hold. Let w0 ∈ R
be given, and let α, β, γ > 0. We consider the cost functional L : X×Y → R defined by

L(u,f) = α
∣∣w(L)− w0

∣∣2 + β‖q‖2L2(0,L) + γ‖f‖2L2(0,L) (55)

for all u = (u,w) ∈ X , f = (q, f) ∈ Y . Using standard arguments, it is easy to see
that L is a weakly lower semicontinuous function on X × Y . Next, we define the set of
admissible pairs by

Vad =
{
(u,f) ∈ X × Y : (Au,v − u)X + j(v)− j(u)
> (f , πbv − πu)Y ∀v ∈ X

}
. (56)

Then the optimal control problem we are interested in can be formulated as follows.

Problem Q: Find (u∗,f∗) ∈ Vad such that

L(u∗,f∗) = min
(u,f)∈Vad

L(u,f). (57)

An element (u∗,f∗) ∈ Vad which solves Problem Q is called an optimal pair, and
the corresponding traction f∗ is called an optimal control. The mechanical interpretation
of Problem Q is the following: we are looking for admissible traction f ∈ Y such that
the associate slip on the contact surface, w(L), is as close as possible to a given slip w0.
Furthermore, this choice has to fulfill a minimum expenditure condition which is taken
into account by the last term in (55).

Our main result in this section is the following existence result.
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Theorem 3. Assume that (19) and (20) hold. Then there exists at least one solution
(u∗,f∗) ∈ Vad of Problem Q.

In order to provide the proof of Theorem 3, we need the following auxiliary result.

Lemma 1. Assume that (19) and (20) hold, let {fn} ⊂ Y be a sequence of functions,
and, for all n ∈ N, let un be the solution of the variational inequality (36) with f = fn.
Assume that

fn ⇀ f in Y as n→∞ (58)

and denote by u the solution of Problem PV . Then

un → u in X as n→∞. (59)

Proof. Let n ∈ N. We use inequality (36) to see that

(Aun,v − un)X + j(v)− j(un) > (fn, πv − πun)Y ∀v ∈ X, (60)

then we take v = 0X in (60) to obtain that

(Aun,un)X + j(un) 6 (fn, πun)Y .

Next, using (42), inequality j(un) > 0, and the continuity of the operator π, (17), it
follows that

‖un‖X 6
c0
m
‖fn‖Y . (61)

We now combine convergence (58) and inequality (61) to deduce that there exists a posi-
tive constant c > 0, which does not depend on n, such that

‖un‖X 6 c. (62)

Inequality (62) shows that the sequence {un} is bounded in X . Therefore, from a stan-
dard argument of compactness we deduce that there exists ũ ∈ X such that

un ⇀ ũ in X as n→∞. (63)

On the other hand, the compactness of the trace implies that

j(un)→ j(ũ) as n→∞. (64)

We now take v = ũ in (60) to obtain that

(Aun,un − ũ)X 6 (fn, πun − πũ)Y + j(un)− j(ũ),

then we pass to the upper limit as n → ∞ in this inequality and use convergences (58),
(63), (64), (18). As a result, we deduce that

lim sup
n→∞

(Aun,un − ũ)X 6 0.
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Therefore, using the pseudomonotonicity of the operator A guaranteed by (45) and the
convergence (63), we deduce that

lim inf
n→∞

(Aun,un − v)X > (Aũ, ũ− v)X ∀v ∈ X. (65)

On the other hand, using (60), (63), (64), and (18) yields

lim sup
n→∞

(Aun,un − v)X 6 (f , πũ− πv)Y + j(v)− j(ũ) ∀v ∈ X. (66)

We combine now inequalities (65) and (66) to see that

(Aũ,v − ũ)X + j(v)− j(ũ) > (f , πv − πũ)Y ∀v ∈ X. (67)

Inequality (67) shows that ũ is a solution to Problem PV . Therefore, by the uniqueness
part of Theorem 1 we deduce that

ũ = u. (68)

A carefully analysis based on the arguments above shows that any weakly convergent
subsequence of the sequence {un} ⊂ X converges weakly to u, where, recall, u is the
element ofX which solves the variational inequality (36). Moreover, estimate (61) shows
that the sequence {un} is bounded in X . Thus, a standard compactness argument allows
us to conclude that the whole sequence {un} ⊂ X converges weakly to u, i.e.,

un ⇀ u in X as n→∞.

We now prove the strong convergence (59). To this end, let n ∈ N. We take v = u
in (60) to obtain that

(Aun,un − u)X 6 (fn, πun − πu)Y + j(u)− j(un). (69)

Next, we use (69) and (42) to find that

m‖un − u‖2X 6 (Aun −Au,un − u)X

= (Aun,un − u)X − (Au,un − u)X
6 (fn, πun − πu)Y − (Au, ũn − u)X + j(u)− j(un).

We now pass to the limit in this inequality and use convergences (63), (64), (18), (58) and
equality (68). As a result, we deduce that

‖un − u‖2X → 0 as n→∞,

which conclude the proof.

Remark 2. Lemma 1 shows that the map f 7→ u(f) : Y → X which associates to
each element f ∈ Y the solution u = u(f) ∈ X of the variational inequality (36) is
weakly-strongly continuous. We shall use this result in Section 5 in the following form:

f∗ε ⇀ f∗ in Y =⇒ u(f∗ε )→ u(f∗) in X as ε→ 0. (70)
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We now have all the ingredients to provide the proof of the Theorem 3.

Proof. Denote
θ = inf

(u,f)∈Vad
L(u,f), (71)

and let {(un,fn)} ⊂ Vad be a minimizing sequence for the functional L, i.e.,

lim
n→∞

L(un,fn) = θ. (72)

Assume that the sequence {fn} is not bounded in Y . Then, passing to a subsequence
still denoted {fn}, we have

‖fn‖Y → +∞ as n→ +∞. (73)

We now use definition (55) of the functional L and equality fn = (qn, fn) to see that

L(un,fn) > min(β, γ)‖fn‖Y .

Therefore, passing to the limit as n → +∞ in this inequality and using (73), we deduce
that

lim
n→+∞

L(un,fn) = +∞. (74)

Equalities (72) and (74) imply that θ = +∞ which represents a contradiction, since (71)
shows that θ ∈ R.

We conclude from above that the sequence {fn} is bounded in Y , and therefore, there
exists f∗ ∈ Y such that, passing to a subsequence still denoted {fn}, we have

fn ⇀ f∗ in Y as n→ +∞. (75)

Let u∗ be the solution of the variational inequality (36) for f = f∗, i.e., u∗ = u(f∗).
Then by definition (56) of the set Vad we have

(u∗,f∗) ∈ Vad. (76)

Moreover, using (75) and (70), it follows that

un → u∗ in X as n→ +∞. (77)

We now use convergences (75), (77) and the weakly lower semicontinuity of the func-
tional L to deduce that

lim inf
n→+∞

L (un,fn) > L(u∗,f∗). (78)

Equality (72) and inequality (78) yield

θ > L(u∗,f∗). (79)

In addition, (76) and (71) imply that

θ 6 L(u∗,f∗). (80)

We now combine inequalities (79), (80) with equality (71) to see that (57) holds which
concludes the proof.

https://www.mii.vu.lt/NA



Analysis and control of a nonlinear boundary value problem 857

5 An convergence result

We now turn to the optimal control problem associated to Problem PεV , and, to this end,
we assume that (19) and (20) hold. Letw0 ∈ R be given, and let α, β, γ > 0. We consider
the cost functional L : X × Y → R defined by (55), and, for each ε > 0, we define the
set of admissible pairs by

Vεad =
{
(uε,f) ∈ X × Y : (Auε,v − uε)X + jε(v)− jε(uε)
> (f , πv − πuε)Y ∀v ∈ X

}
.

Then the optimal control problem we study in this section is the following.

Problem Qε: Find (u∗ε,f
∗
ε ) ∈ Vεad such that

L(u∗ε,f∗ε ) = min
(uε,f)∈Vε

ad

L(uε,f).

Using Theorem 3, it follows that the optimal control problem (Problem Qε) has at
least one solution for each ε > 0. Moreover, we have the following convergence result.

Theorem 4. Assume that (19) and (20) hold, and let {(u∗ε,f∗ε )} be a sequence of solu-
tions of Problem Qε. Then there exists a subsequence of the sequence {(u∗ε,f∗ε )} again
denoted {(u∗ε,f∗ε )} and an element (u∗ε,f

∗
ε ) ∈ X × Y such that

f∗ε ⇀ f∗ in Y as ε→ 0, (81)
u∗ε → u∗ in X as ε→ 0, (82)
(u∗ε,f

∗
ε ) is a solution of Problem Q. (83)

Proof. Let ε > 0, and denote u∗ε = (u∗ε, w
∗
ε) and f∗ε = (q∗ε , f

∗
ε ). We have

‖f∗ε ‖2Y = ‖q∗ε‖2L2(0,L) + ‖f
∗
ε ‖2L2(0,L)

6
1

min(β, γ)

(
β‖q∗ε‖2L2(0,L) + γ‖fε‖2L2(0,L)

)
6

1

min(β, γ)
L(u∗ε,f∗ε ),

and, since (u∗ε,f
∗
ε ) is a solution of Problem Qε, we deduce that

‖f∗ε ‖2Y 6
1

min(β, γ)
L(uε,f) ∀(uε,f) ∈ Vεad. (84)

Next, since A is linear and j is a positive functional, it follows that uε = 0X is the
solution of Problem PεV for f = 0Y . Moreover, it is easy to see that

L(0X ,0Y ) = α|w0|2. (85)

We now take (uε,f) = (0X ,0Y ) in (84), then use (85) to see that the sequence {f∗ε } is
bounded in Y . Therefore, passing to a subsequence again denoted {f∗ε }, it follows that
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there exists f∗ ∈ Y such that (81) holds. Denote by u∗ the solution of Problem PV for
f = f∗, i.e., u∗ = u(f∗). This implies that

(u∗,f∗) ∈ Vad. (86)

Moreover, using (81), (54), and (70), we have∥∥uε(f∗ε )− u(f∗)
∥∥
X

6
∥∥uε(f∗ε )− u(f∗ε )

∥∥
X
+
∥∥u(f∗ε )− u(f∗)

∥∥
X
→ 0

as ε→ 0, and, since uε(f
∗
ε ) = u∗ε , u(f∗ε ) = u∗, we deduce that (82) holds, too.

We now use convergences (81), (82) and the weakly lower semicontinuity of the
functional L to see that

L(u∗,f∗) 6 lim inf
ε→0

L(u∗ε,f∗ε ). (87)

Next, we fix a solution (ũ∗, f̃∗) of Problem Q, and therefore,

L(ũ∗, f̃∗) = min
(u,f)∈Vad

L(u,f). (88)

In addition, for each ε > 0, we denote by ũε the solution of Problem PεV for f = f̃∗.
This implies that (ũε, f̃∗) ∈ Vεad, and by the optimality of the pair (u∗ε,f

∗
ε ) we have that

L(u∗ε,f∗ε ) 6 L(ũε, f̃∗).

We pass to the upper limit in this inequality to see that

lim sup
ε→0

L(u∗ε,f∗ε ) 6 lim sup
ε→0

L(ũε, f̃∗). (89)

Now, remember that ũ∗ is the solution of Problem PV for f = f̃∗ and is the ũε
solution of Problem PεV for f = f̃∗. Therefore, using part (ii) of Theorem 2, we deduce
that

ũε → ũ∗ in X as ε→ 0,

and then the continuity of the functional u 7→ L(u, f̃∗) : X → R yields

lim
ε→0
L(ũε, f̃∗) = L(ũ∗, f̃∗). (90)

We now combine (87), (89), and (90) to see that

L(u∗,f∗) 6 L(ũ∗, f̃∗). (91)

On the other hand, since (ũ∗, f̃∗) is a solution of Problem Q, inclusion (86) implies
that

L(ũ∗, f̃∗) 6 L(u∗,f∗). (92)

Inequalities (91) and (92) imply that

L(u∗,f∗) = L(ũ∗, f̃∗). (93)

We now combine (86), (93), (88) to see that (83) holds which concludes the proof.
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We end the section with the remark that if the solution (u∗,f∗) of Problem Q is
unique, then the whole sequence {(u∗ε,f∗ε )} converge to this solution in the sense given
by (81), (82). In addition to the mathematical interest in this convergence result, it is
important from the mechanical point of view since it proves that the solution of the
optimal control problem for the frictional contact problem can be approached by the
solutions of the optimal control problem for the regularized frictional contact problem
as the regularization parameter converges to zero.
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