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Abstract. In this paper, we construct a delayed diffusive model to explore the spatial dynamics of
cell cycle in G2/M transition. We first obtain the local stability of the unique positive equilibrium for
this model, which is irrelevant to the diffusion. Then, through investigating the delay-induced Hopf
bifurcation in this model, we establish the existence of spatially homogeneous and inhomogeneous
bifurcating periodic solutions. Applying the normal form and center manifold theorem of functional
partial differential equations, we also determine the stability and direction of these bifurcating
periodic solutions. Finally, numerical simulations are presented to validate our theoretical results.
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1 Introduction

In organisms, the cell cycle, which processes DNA duplication and cell division, is the
fundamental mechanism of cell proliferation. With plenty of biological experiments in
the past few years, a large number of proteins, which are involved in cell cycle, have been
revealed. These proteins form regulatory circuits that act like autonomous oscillators [15].
The progression of cell cycle can be briefly divided into four phases: G1, S, G2 and M.
During the G1 phase, the cell increases the organelle number and its size to prepare for
the cell division. After that, the cell transits to S phase during which DNA is replicated.
Following the S phase, the cell enters G2 phase and starts to synthesize some proteins,
which are necessary for cell division. Finally, the cell passes the G2/M transition allowing
the initiation of mitosis and divides into two daughter cells. The sequential occurrence of
these four phases is driven by a family of cyclin/Cdks complexes [16, 19].
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Mathematical modeling is a powerful tool to investigate the dynamics of biologi-
cal systems such as epidemiology [3, 34], ecology [26, 28, 37, 40] and molecular net-
work [32, 35]. A number of mathematical models have been proposed to explore the
regulatory mechanism of cell cycle in early embryos [10, 18, 21, 31], yeast [6, 7, 27]
and mammalian cells [1, 9, 22]. Most of these models were described by nonlinear or-
dinary differential equations. These theoretical models revealed that the oscillation of
a cell cycle system is driven by the delayed negative feedback loop provided by cdc2-
induced cyclin degradation. Furthermore, the bistable steady-state response originating
from positive feedback loops was proved to enhance the oscillation robustness of cell
cycle [20]. Besides the comprehensive models mentioned above, analytical studies of cell
cycle systems are also performed in some reduced models. Tecarro et al. used a 3-variable
cell cycle model to describe G1/S transition [30]. Using linear stability analysis, they
obtained the stability conditions of the steady states in a simplified system. Moreover,
they proved the occurrence of the periodic solutions emerging via supercritical Hopf
bifurcations.

Recently, the spatiotemporal dynamics of cell cycle systems have been increasingly
studied [5, 33, 38, 39]. Our previous work considered the diffusion of proteins in fission
yeast and explored the effect of the spatial regulations on the initiation of mitosis [38].
Vilela et al. constructed a reaction–diffusion–convection system interacting with a deter-
ministic model describing microtubule dynamics and the cell size checkpoint of yeast
[33]. Ferell’s group used partial differential equations to propose a theoretical model
for revealing the role of bistability in the spatial activation of Cdks [5]. Furthermore,
the prediction is validated by their experimental data. However, most previous studies
concentrated on the numerical simulations, and we haven’t paid enough attention to
mathematical analysis (the results on the stability and bifurcations) of the spatial effect on
the dynamics of cell cycle systems.

The objective of this study is to analyze the stability of the positive equilibrium, the
existence and stability of Hopf bifurcation induced by the delay in a cell cycle model
involving spatial diffusion. The rest of the paper is organized as follows. In Section 2,
we present a delayed diffusive cell cycle model for G2/M transition, which is system (3).
In Section 3, the local stability of the positive equilibrium is obtained, and the existence
conditions of homogeneous and inhomogeneous Hopf bifurcation periodic solutions are
derived by analyzing the characteristic equations. In Section 4, the direction of Hopf
bifurcation and the stability of the bifurcating periodic orbits are determined by using
the normal form and center manifold theorem of functional partial differential equations.
In Section 5, some numerical simulations are given to illustrate the theoretical results.
Finally, we summarize our conclusion in Section 6.

2 The construction of a mathematical model

In this section, our aim is to establish a delayed diffusive model with Neumann boundary
condition for depicting the spatiotemporal dynamics of the cell cycle system in G2/M
transition.
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Figure 1. Scheme for the mathematical model of G2/M transition. There is a delayed negative feedback loop
in which MPF(u) promotes the activity of APC(v). In return, APC can reduce the concentration of MPF by
increasing its degradation rate. In addition, MPF positively regulates itself via wee1 and cdc25. Thus, positive
feedback loops are also involved in the model.

Figure 1 exhibits the core regulatory network in G2/M transition. MPF (mitosis pro-
moting factor) is a kind of protein complex which promotes the initiation of mitosis. Cells
can enter mitosis only when the concentration of MPF reaches a certain level. In this
mathematical model, we assume that MPF is synthesized at a constant rate ks1 . Let u(t)
represent the concentration of MPF. MPF can increase the production of APC (anaphase-
promoting complex) represented by v(t). The basic synthesis rate of v(t) is denoted by
a constant ks2 . In fact, the promotion of APC is not instantaneous, but mediated by some
time lags required for intermediate biological processes. Thus a increasing function of
MPF with time delay, g(u(t − τ)), is employed to denote the positive regulation of
MPF to APC. In return, APC combines with MPF at a constant rate of k3 and promotes
MPF degradation, which closes a negative feedback loop [17]. The constants kd1 and kd2
represent the basic degradation rate of MPF and APC, respectively. A pair of positive
feedback loops are also involved in the regulation of G2/M transition (MPF activates its
activator Cdc25 and inactivates its inhibitor Wee1) [8]. In order to simplify the model,
we do not show them in the figure and just use a increasing function, h(u), to represent
the positive auto-regulation of MPF. Then, we can obtain the following delayed ordinary
differential equations:

du

dt
= ks1 + h(u)− (kd1 + k3v)u,

dv

dt
= ks2 + g

(
u(t− τ)

)
− kd2v,

(1)

where ks1 , ks2 , kd1 , kd2 , k3 are positive constants.
Recent studies show that the diffusion of some proteins may play an important role

in the dynamics of cell cycle [33]. Experimentally, cell extract is usually loaded into
a teflon tube to observe the diffusion dynamics. Thus, theoretical models investigating the
spatiotemporal dynamics of cell cycle can be studied in one dimension. So we similarly
introduce the one-dimensional spatial diffusion of MPF and APC into system (1). In
addition, considering that MPF and APC in outside cells may not spread to the inside
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because of the cell walls, we use Neumann boundary condition for system (1). There-
fore, a delayed diffusive cell cycle model with Neumann boundary condition is set up
as follows:

∂u

∂t
= d1∆u+ ks1 + h(u)− (kd1 + k3v)u, x ∈ (0, l), t > 0,

∂v

∂t
= d2∆v + ks2 + g

(
u(t− τ)

)
− kd2v, x ∈ (0, l), t > 0,

ux(0, t) = vx(0, t) = 0, ux(l, t) = vx(l, t) = 0, t > 0,

u(x, θ) = u0(x, θ) > 0, v(x, θ) = v0(x, θ) > 0, x ∈ [0, l], θ ∈ [−τ, 0],

(2)

where d1 > 0 and d2 > 0 are the diffusion constants for MPF and APC, respectively.
As an aid to perform analytical studies of system (2), we take h(u), g(u) as simple

increasing functions h(u) = k1u and g(u) = k2u, where k1, k2 are positive constants.
For simplification of notations, we denote a = ks1 , b = k1 − kd1 , c = ks2 , f = kd2 .
Thus, we obtain the following reduced model with Neumann boundary condition:

∂u

∂t
= d1∆u+ a+ bu− k3uv, x ∈ (0, l), t > 0,

∂v

∂t
= d2∆v + c+ k2u(t− τ)− fv, x ∈ (0, l), t > 0,

ux(0, t) = vx(0, t) = 0, ux(l, t) = vx(l, t) = 0, t > 0,

u(x, θ) = u0(x, θ) > 0, v(x, θ) = v0(x, θ) > 0, x ∈ [0, l], θ ∈ [−τ, 0],

(3)

where u(x, t) represents the concentration of MPF at time t and location x, v(x, t) repre-
sents the production of APC at time t and location x, a and c denote the basic synthesis
rate of MPF and APC, respectively. f represents the basic degradation rate of APC. k2 is
the coefficient of the increasing function which denotes the positive regulation of MPF to
APC. k3 denotes the rate of APC combining with MPF. The difference of k1 minus kd1
is denoted by b, and k1 is the coefficient of the increasing function which represents the
positive auto-regulation of MPF, kd1 represents the basic degradation rate of MPF. Here
all the parameters a, c, f , k2, k3 are positive, and b ∈ R. τ > 0 is the time delay, l ∈ R+.

In the rest of the paper, regarding τ as a bifurcation parameter, we focus on the stability
of the positive equilibrium and the Hopf bifurcation analysis of system (3).

3 Stability analysis of the model

In this section, by analyzing the associated characteristic equation, we investigate the
stability of the unique positive equilibrium for system (3) and establish the existence of
spatially homogeneous and inhomogeneous bifurcating periodic solutions depending on
Hopf bifurcation.
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3.1 Local stability of the model without delay

In this subsection, we obtain the stability of the positive equilibrium for system (3) without
delay, which is independent of diffusion. Let τ = 0, system (3) is turned into

∂u

∂t
= d1∆u+ a+ bu− k3uv, x ∈ (0, l), t > 0,

∂v

∂t
= d2∆v + c+ k2u− fv, x ∈ (0, l), t > 0,

ux(0, t) = vx(0, t) = 0, ux(l, t) = vx(l, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ [0, l].

(4)

Obviously, the equilibria of system (4) are determined by the following equations:

a+ bu− k3uv = 0, c+ k2u− fv = 0. (5)

Solving (5), we obtain two equilibria (u−, v−) and (u0, v0), where

u− =
bf − ck3 −

√
(ck3 − bf)2 + 4afk2k3

2k2k3
,

v− =
ck3 + bf −

√
(ck3 − bf)2 + 4afk2k3

2fk3
,

and

u0 =
bf − ck3 +

√
(ck3 − bf)2 + 4afk2k3

2k2k3
,

v0 =
ck3 + bf +

√
(ck3 − bf)2 + 4afk2k3

2fk3
.

(6)

It is not difficult to find that u− < 0, v− ∈ R and u0 > 0, v0 > 0, which show
that only the unique positive equilibrium (u0, v0) is in according with the reality. So we
omit the non-positive equilibrium (u−, v−) and just study the positive equilibrium (u0, v0)
throughout this paper.

For system (4) without diffusion, the Jacobian matrix at the positive equilibrium
(u0, v0) is

J =

(
A −B
k2 −f

)
,

where
A = b− k3v0, B = k3u0. (7)

It follows from (6) and (7) that

A < 0, B > 0. (8)
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Then, at the positive equilibrium (u0, v0), the characteristic equation of system (4) is

λ2 − (A− f)λ+Bk2 −Af = 0. (9)

The roots of Eq. (9) are given by

λ1,2 =
A− f ±

√
(A− f)2 − 4(Bk2 −Af)

2
.

From (8), it is seen that the characteristic roots λ1,2 < 0. So we have the following
conclusion.

Theorem 1. For system (3) without diffusion when τ = 0, the positive equilibrium
(u0, v0) is locally asymptotically stable.

Remark 1. For system (3) with diffusion when τ = 0, the positive equilibrium (u0, v0)
is also locally asymptotically stable, which can be concluded from (12) and (13).

3.2 Hopf bifurcation induced by delay

In this subsection, we discuss the existence of the Hopf bifurcation induced by delay when
τ 6= 0. For further simplification of notations, we always use u(t) for u(x, t), v(t) for
v(x, t), u(t− τ) for u(x, t− τ), v(t− τ) for v(x, t− τ). Then linearizing system (3) at
the positive equilibrium (u0, v0) is as follows:(

∂u
∂t
∂v
∂t

)
= D∆

(
u(t)
v(t)

)
+ L1

(
u(t)
v(t)

)
+ L2

(
u(t− τ)
v(t− τ)

)
, (10)

where

D =

(
d1 0
0 d2

)
, L1 =

(
A −B
0 −f

)
, L2 =

(
0 0
k2 0

)
.

The characteristic equation of (10) is

det
(
λI −Mn − L1 − L2e−λτ

)
= 0, (11)

where I is the 2 × 2 identity matrix, Mn = −n2π2/l2 diag{d1, d2}, n = 0, 1, 2, . . . .
Here −n2π2/l2, n = 0, 1, 2, . . . , are the eigenvalues of ∆ in [0, l] with the Neumann
boundary condition. It follows from (11) that the characteristic equations at (u0, v0) are
the following sequence of quadratic transcendental equations

∆n(λ, τ) = λ2 + Pnλ+Qn + k2Be−λτ = 0, (12)

where

Pn = (d1 + d2)
n2π2

l2
−A+ f,

Qn = d1d2
n4π4

l4
+ (fd1 −Ad2)

n2π2

l2
−Af.
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By (8), we obtain
Pn > 0, Qn > 0. (13)

When τ = 0, system (3) becomes (4), then all the roots of Eq. (12) have negative real
parts by (13). And we get ∆n(0, τ) > 0 for λ = 0.

From the result of [23] one can see that the sum of the multiplicities of the roots of (12)
in the open right half-plane changes only when a root appears on or crosses the imaginary
axis. So we need to derive the conditions, which make the above cases happen. We first
make the following hypothesis:

(H1) b > ck3/f .

Denote

Ñ =
l

π

√
Ad2 − fd1 +

√
(Ad2 − fd1)2 + 4d1d2(Af + k2B)

2d1d2
,

and

N0 =

{
[Ñ ], Ñ /∈ N,
Ñ − 1, Ñ ∈ N.

Then we have the following lemma.

Lemma 1. Assume that (H1) holds. Then Eq. (12) has a pair of purely imaginary roots
±iωn (0 6 n 6 N0) at τ jn, where

ωn =

√
1

2

(
2Qn − P 2

n +

√(
2Qn − P 2

n

)2 − 4
(
Q2
n − k2

2B
2
))
, (14)

and

τ jn =
1

ωn
arccos

ω2
n −Qn
k2B

+
2jπ

ωn
, j = 0, 1, 2, . . . . (15)

Proof. Let λ = iω (ω > 0) be a root of the characteristic Eq. (12), then ω satisfies the
following equation:

− ω2 + iωPn +Qn + k2B(cosωτ − i sinωτ) = 0. (16)

Separating the real and imaginary parts of Eq. (16) leads to

−ω2 +Qn + k2B cosωτ = 0,

ωPn − k2B sinωτ = 0,
(17)

which implies that
ω4 +

(
P 2
n − 2Qn

)
ω2 +Q2

n − k2
2B

2 = 0. (18)

Set z = ω2, then Eq. (18) is reduced to

z2 +
(
P 2
n − 2Qn

)
z +Q2

n − k2
2B

2 = 0, (19)

Nonlinear Anal. Model. Control, 23(5):691–709
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and the roots of (19) are given by

z± =
1

2

(
2Qn − P 2

n ±
√(

2Qn − P 2
n

)2 − 4
(
Q2
n − k2

2B
2
) )
.

We have Qn + k2B > 0 by (8) and (13), and

Qn − k2B =
d1d2π

4

l4
n4 +

(fd1 −Ad2)π2

l2
n2 − (Af + k2B).

Under (H1), Af + k2B > 0, thus Qn − k2B < 0 for 0 6 n 6 N0, and Qn − k2B > 0
for n > N0. So we get Q2

n − k2
2B

2 < 0 for 0 6 n 6 N0, and Q2
n − k2

2B
2 > 0 for

n > N0. Then we obtain z− < 0 and z+ > 0 for 0 6 n 6 N0. It follows that ωn, τ jn,
j = 0, 1, 2, . . . , are given by (14) and (15) respectively.

In view of Lemma 1, concerning time delay τ , throughout the paper, we only consider
the following case:

τ ∈ E :=
{
τ jn: τ jm 6= τks , m 6= s, 0 6 m, s 6 N0, j, k ∈ N

}
.

Let λn(τ) = αn(τ) + iβn(τ) be the root of (12) satisfying αn(τ jn) = 0 and βn(τ jn) = ωn
when τ is close to τ jn. Then we obtain the following transversality condition.

Lemma 2. Suppose (H1) holds. Then α′n(τ jn) = d Re(λ)/dτ |τ=τj
n
> 0 for τ ∈ E and

j ∈ N.

Proof. Differentiating two sides of (12) on τ , we get(
dλ

dτ

)−1

=
2λ+ Pn
λk2Be−λτ

− τ

λ
.

Then by (14) and (17), we have(
Re

(
dλ

dτ

)−1)∣∣∣∣
τ=τj

n

= Re

(
2iωn + Pn

iωnk2B

(
cos
(
ωnτ

j
n

)
+ i sin

(
ωnτ

j
n

))
− τ jn
iωn

)
=

2 cos(ωnτ
j
n)

k2B
+
Pn sin(ωnτ

j
n)

ωnk2B

=
2ω2

n + P 2
n − 2Qn

(k2B)2

=

√
(2Qn − P 2

n)2 − 4(Q2
n − k2

2B
2)

(k2B)2
> 0,

which means that

α′n
(
τ jn
)

=
d Re(λ)

dτ

∣∣∣∣
τ=τj

n

> 0.

https://www.mii.vu.lt/NA



Dynamics in a delayed diffusive cell cycle model 699

Denote τ0
∗ = min06k6N0{τ0

k}. Based on the above analysis and the qualitative theory
of partial functional differential equations [36], we have the following results on the
stability and Hopf bifurcation.

Theorem 2. Suppose (H1) holds. Then for system (3), the following statements are true:

(i) For τ ∈ [0, τ0
∗ ), the positive equilibrium (u0, v0) is locally asymptotically stable.

(ii) A Hopf bifurcation occurs at the positive equilibrium (u0, v0) when τ = τ0
∗ .

(iii) System (3) undergoes Hopf bifurcations near the positive equilibrium (u0, v0) at
τ = τ jn with τ ∈ E. Specifically, when τ = τ j0 , j ∈ N, the bifurcating periodic
solutions are all spatially homogeneous, which coincide with the periodic solu-
tions of the corresponding ODE system; when τ = τ jn ∈ E, 1 6 n 6 N0, j ∈ N,
the bifurcating periodic solutions are spatially inhomogeneous.

4 Direction and stability of Hopf bifurcation

In this section, we discuss the direction and stability of Hopf bifurcation by using center
manifold theorem and normal form theorem of partial functional differential equations
[12, 36]. Similar approach has also been used in [14, 28, 40].

We first transform the positive equilibrium to the origin by the variable substitution
ũ(x, t) = u(x, τt)−u0 and ṽ(x, t) = v(x, τt)−v0. For simplification, we drop the tilde.
Then for x ∈ (0, l) and t > 0, system (3) can be rewritten as follows:

∂u

∂t
= τ(d1∆u+Au−Bv − k3uv),

∂v

∂t
= τ(d2∆v + k2u(t− 1)− fv).

(20)

Fixing j ∈ N, for 0 6 n 6 N0, we denote τ̃ = τ jn. Let τ = τ̃ + α, α ∈ R, u1(t) =
u(·, t), u2(t) = v(·, t) and U = (u1, u2). Then, in the phase space C = C([−1, 0], X),
X := {(u, v) ∈W 2,2(0, l) | ∂u/∂x = ∂v/∂x = 0 at 0, l}, we rewrite (20) in an abstract
form

dU(t)

dt
= τ̃D∆U + Lτ̃ (Ut) +G(Ut, α), (21)

where Lα(·) : C→ X and G : C× R→ X are given, respectively, by

Lα(ϕ) = α

(
Aϕ1(0)−Bϕ2(0)
−fϕ2(0) + k2ϕ1(−1)

)
,

G(ϕ, α) = αD∆ϕ+ Lα(ϕ) + F (ϕ, α)

for ϕ = (ϕ1, ϕ2)T ∈ C, and

F (ϕ, α) = (τ̃ + α)
(
F1(ϕ, α), F2(ϕ, α)

)
,

F1(ϕ, α) = −k3ϕ1(0)ϕ2(0), F2(ϕ, α) = 0.
(22)

Nonlinear Anal. Model. Control, 23(5):691–709
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Consider the linear equation

dU(t)

dt
= τ̃D∆U + Lτ̃ (Ut). (23)

From Lemma 1 we can conclude that ±iωnτ̃ are characteristic values of system (23), and
the linear functional differential equation is as follows:

dz(t)

dt
= −τ̃Dn

2π2

l2
z(t) + Lτ̃ (zt). (24)

By Riesz representation theorem, there exists a 2×2 matrix function η(σ, α), −16σ60,
such that

−τ̃Dn
2π2

l2
ϕ(0) + Lτ̃ (ϕ) =

0∫
−1

dη(σ, α)ϕ(σ) for ϕ ∈ C
(
[−1, 0],R2

)
, (25)

where

η(σ, α) =


(τ̃ + α)M, σ = 0,

0, σ ∈ (−1, 0),

(τ̃ + α)F, σ = −1,

and

M =

(
A− d1n

2π2

l2 −B
0 −f − d2n

2π2

l2

)
, F =

(
0 0
k2 0

)
.

Let A(τ̃) denote the infinitesimal generator of semigroup induced by the solutions of
Eq. (24). For ϕ ∈ C1([−1, 0],R2), ψ ∈ C1([0, 1],R2), we define

A(τ̃)ϕ(θ) =

{
dϕ(θ)

dθ , θ ∈ [−1, 0),∫ 0

−1
dη(σ, 0)ϕ(σ), θ = 0,

and

A∗ψ(r) =

{
−dψ(r)

dr , r ∈ (0, 1],∫ 0

−1
dη(σ, 0)ψ(−σ), r = 0.

Then A∗ is the formal adjoint of A(τ̃) under the bilinear paring

(ψ,ϕ) = ψ̄(0)ϕ(0)−
0∫
−1

σ∫
ξ=0

ψ̄(ξ − σ) dη(σ, 0)ϕ(ξ) dξ

= ψ̄(0)ϕ(0) + τ̃

0∫
−1

ψ̄(ξ + 1)Fϕ(ξ) dξ. (26)
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A(τ̃) has a pair of simple purely imaginary eigenvalues±iωnτ̃ , which are also eigen-
values of A∗(τ̃). The center subspace of Eq. (24) is P = span{p(θ), p̄(θ)}, where
p(θ) = (1, ξ)Teiωnτ̃θ (θ ∈ [−1, 0]) is the eigenvector of A(τ̃) corresponding to iωnτ̃ .
Similarly, the formal adjoint subspace of P with respect to the bilinear form (26) is
P ∗ = span{q(s), q̄(s)}, where q(s) = K(1, ζ)eiωnτ̃s (s ∈ [0, 1]) is the eigenvector
of A∗(τ̃) corresponding to −iωnτ̃ with

ξ =
1

B

(
A− iωn −

d1n
2π2

l2

)
, ζ =

−A− iωn + d1n
2π2

l2

k2eiωnτ̃
,

K =
1

1 + ζξ̄ + k2τ̃ ζeiωnτ̃
.

Let Φ = (p(θ), p̄(θ)) and Ψ = (q(θ), q̄(θ))T, then (Ψ, Φ) = I . Further, we define fn :=
(f1
n, f

2
n) and

γ · fn := γ1f
1
n + γ2f

2
n for γ = (γ1, γ2)T ∈ C, (27)

where

f1
n =

(
cos nπxl

0

)
, f2

n =

(
0

cos nπxl

)
.

Here cos(nπx/l), n = 0, 1, 2, . . . , are eigenfunctions corresponding to eigenvalues
n2π2/l2 of the operator ∆ with the boundary condition. For u=(u1, u2), v=(v1, v2)∈X
and 〈ϕ, f0〉 = (〈ϕ, f1

0 〉, 〈ϕ, f2
0 〉)T, we define

〈u, v〉 :=
1

l

l∫
0

u1v̄1 dx+
1

l

l∫
0

u2v̄2 dx.

Then the center subspace of linear equation (23) is

PcC = Φ
(
Ψ, 〈ϕ, fn〉

)
· fn ∀ϕ ∈ C,

and C = PCC
⊕
Q, where Q is the complement subspace of PcC in C.

Let Aτ̃ denote the infinitesimal generator of an analytic semigroup induced by the
linear system (23). We rewrite Eq. (20) in the following abstract form:

dU(t)

dt
= Aτ̃Ut +X0G(Ut, α), (28)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

1, θ = 0.

Since the formulas for the bifurcation direction and stability are to be developed only
with respect to α = 0, we set α = 0 in Eq. (28) and obtain a center manifold

W (z, z̄, 0) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · (29)
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with the range in Q. The flow of Eq. (28) on the center manifold can be written as

Ut = Φ
(
z(t), z̄(t)

)T · fn +W
(
z(t), z̄(t), 0

)
, (30)

where (
z(t), z̄(t)

)T
=
(
Ψ, 〈Ut, fn〉

)
, and W

(
z(t), z̄(t), 0

)
∈ C

(
[−1, 0], Q

)
.

Thus, by [36], on the center manifold, z satisfies

ż = iωnτ̃ z + g(z, z̄),

where

g(z, z̄) =
(
q(θ), X0

〈
G(Ut, 0), fn

〉)
= g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · . (31)

Then by (29) and (30), the solution of (21) on the center manifold can be written as

Ut =
(
zp(θ) + z̄p̄(θ)

)
· fn +W20(θ)

z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · ,

and we get(
ut(0)
vt(0)

)
=

(
(z+z̄) cos nπxl +W

(1)
20 (0) z

2

2 +W
(1)
11 (0)zz̄ +W

(1)
02 (0) z̄

2

2 + · · ·
(ξz+ξ̄z̄) cos nπxl +W

(2)
20 (0) z

2

2 +W
(2)
11 (0)zz̄ +W

(2)
02 (0) z̄

2

2 + · · ·

)
. (32)

Therefore, by (22) and (32), we have

−k3ut(0)vt(0)

=
z2

2

(
−2k3ξ cos2 nπx

l

)
+ zz̄

(
−k3(ξ + ξ̄) cos2 nπx

l

)
+
z̄2

2

(
−2k3ξ̄ cos2 nπx

l

)
+
z2z̄

2

(
−k3 cos

nπx

l

(
W

(2)
20 (0) + ξ̄W

(1)
20 (0) + 2W

(2)
11 (0) + 2ξW

(1)
11 (0)

))
. (33)

Denote Υk = (1/l)
∫ l

0
cosk(nπx/l) dx, k = 2, 3. Then by (22), (27) and (33), we

obtain〈
G(Ut, 0), fn

〉
=
τ̃

l

l∫
0

(
F1(Ut, 0) · f̄1

n + F2(Ut, 0) · f̄2
n

)
dx

=
z2

2
τ̃

(
−2k3ξ

0

)
Υ3 + zz̄τ̃

(
−k3(ξ + ξ̄)

0

)
Υ3 +

z̄2

2
τ̃

(
−2k3ξ̄

0

)
Υ3

+
z2z̄

2
(−k3τ̃)

(
W

(2)
20 (0) + ξ̄W

(1)
20 (0) + 2W

(2)
11 (0) + 2ξW

(1)
11 (0)

0

)
Υ2.
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Thus, by (31), we have

g(z, z̄) =
z2

2
(−2Kk3ξ)Υ3τ̃ + zz̄

(
−Kk3(ξ + ξ̄)

)
Υ3τ̃ +

z̄2

2
(−2Kk3ξ̄)Υ3τ̃

+
z2z̄

2

(
−Kk3

(
W

(2)
20 (0) + ξ̄W

(1)
20 (0) + 2W

(2)
11 (0) + 2ξW

(1)
11 (0)

))
Υ2τ̃ . (34)

Since Υ3 = 0 for n = 1, 2, 3, . . . , it can be seen from (31) and (34) that g20 = g11 =
g02 = 0 for n = 1, 2, 3, . . . . Then for n = 0, we have

g20 = −2Kk3ξτ̃ , g11 = −Kk3(ξ + ξ̄)τ̃ , g02 = −2Kk3ξ̄τ̃ ,

and for n ∈ N, we obtain

g21 = −Kk3τ̃
(
W

(2)
20 (0) + ξ̄W

(1)
20 (0) + 2W

(2)
11 (0) + 2ξW

(1)
11 (0)

)
.

For a complete description of g21, we need to compute the expressions of W11(θ) and
W20(θ) with θ ∈ [−1, 0].

Since

Ẇ = Aτ̃W +X0G(Ut, 0)− Φ
(
Ψ,
〈
X0G(Ut, 0), fn

〉)
· fn = Aτ̃W +H(z, z̄) (35)

with

H(z, z̄) = H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · · ,

then by using the chain rule Ẇ = Wz ż +Wz̄ ˙̄z, we have

(2iωnτ̃ −Aτ̃ )W20 = H20, −Aτ̃W11 = H11,

(−2iωnτ̃ −Aτ̃ )W02 = H02.
(36)

Noticing that for θ ∈ [−1, 0),

−Φ
(
Ψ,X0

〈
G(Ut, 0), fn

〉)
· fn = H20

z2

2
+H11zz̄ +H02

z̄2

2
+ · · · ,

we obtain for θ ∈ [−1, 0),

H20(θ) = H11(θ) = 0 when n = 1, 2, 3, . . . ,

and when n = 0, we have

H20(θ) = −
(
p(θ)g20 + p̄(θ)ḡ02

)
· f0, H11(θ) = −

(
p(θ)g11 + p̄(θ)ḡ11

)
· f0.

In addition, for θ = 0, it follows from (28), (35) that

H(z, z̄)(0) = G(Ut, 0)− Φ
(
Ψ,
〈
G(Ut, 0), fn

〉)
· fn,
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where

H20(0) =

{
τ̃
(−2k3ξ

0

)
cos2 nπx

l , n = 1, 2, 3, . . . ,

τ̃
(−2k3ξ

0

)
− (p(0)g20 + p̄(0)ḡ02) · f0, n = 0,

H11(0) =

{
τ̃
(−k3(ξ+ξ̄)

0

)
cos2 nπx

l , n = 1, 2, 3, . . . ,

τ̃
(−k3(ξ+ξ̄)

0

)
− (p(0)g11 + p̄(0)ḡ11) · f0, n = 0.

Then by (36) and the definition of Aτ̃ , we have for θ ∈ [−1, 0)

Ẇ20 = Aτ̃W20 = 2iωnτ̃W20 −
(
g20p(θ) + ḡ02p̄(θ)

)
· fn,

it follows that

W20(θ) =
i

ωnτ̃

(
g20p(θ) +

ḡ02

3
p̄(θ)

)
· fn + E1e2iωnτ̃θ, (37)

where

E1 =

{
W20(0), n = 1, 2, 3, . . . ,

W20(0)− i
ωnτ̃

(g20p(θ) + ḡ02
3 p̄(θ)) · fn, n = 0.

On the other hand, for θ = 0, it is concluded from the definition of Aτ̃ , (23)–(25),
(28) and (36) that

(2iωnτ̃ −Aτ̃ )W20(0)− Lτ̃W20(θ) = H20(0). (38)

Substituting (37) into (38), together withAτ̃p(0)+Lτ̃ (p(θ)·f0) = iω0τ̃ p(0)·f0,Aτ̃ p̄(0)+
Lτ̃ (p̄(θ) · f0) = iω0τ̃ p̄(0) · f0, we get

2iωnτ̃E1 −Aτ̃E1 − Lτ̃
(
E1e2iωnτ̃σ) = τ̃

(
−2k3ξ

0

)
cos2 nπx

l
, n = 0, 1, 2, . . . ,

which implies that

E1 =

(
2iωn + d1n

2π2

l2 −A B

−k2e−2iωnτ̃ 2iωn + d2n
2π2

l2 + f

)−1(
−2k3ξ

0

)
cos2 nπx

l
,

where n = 0, 1, 2, . . . . Furthermore, similar to the procedure of computing of W20, the
expression of W11 is as follows:

W11(θ) =
i

ωnτ̃

(
ḡ11p̄(θ)− g11p(θ)

)
· fn + E2,

where

E2 =

(
d1n

2π2

l2 −A B

−k2
d2n

2π2

l2 + f

)−1(
−k3(ξ + ξ̄)

0

)
cos2 nπx

l
, n = 0, 1, 2, . . . .
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In addition, it is known to all that the direction and stability of bifurcating periodic
orbits are determined by the following quantities [12, 36]:

c1(0) =
i

2ωnτ̃

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+

1

2
g21, β2 = 2 Re

(
c1(0)

)
,

µ2 = − Re(c1(0))

Re(λ′(τ jn))
, T2 = − 1

ωnτ̃

(
Im
(
c1(0)

)
+ µ2 Im

(
λ′
(
τ jn
)))

.

(39)

Then by [12, Thm. 2.2] and [36, Chap. 2], we have the following results.

Theorem 3. For any critical value τ jn,

(i) if µ2 > 0 (resp. < 0), then the Hopf bifurcation is forward (resp. backward), that
is, the bifurcating periodic solutions exists for τ > τ jn (resp. τ < τ jn);

(ii) if β2 < 0 (resp. > 0), then the bifurcating periodic solutions are orbitally asymp-
totically stable (resp. unstable).

(iii) if T2 > 0 (resp. T2 < 0), then the period increases (resp. decreases).

5 Numerical simulations

In this section, we show some numerical simulations to validate our theoretical results.
For system (3), we choose the following parameters:

a = 0.1, b = 1, c = 0.1, k2 = 5, k3 = 1,

f = 0.25, d1 = 0.005, d2 = 0.0125, L = 4.
(40)

Then we obtain the unique positive equilibrium (u0, v0) = (0.0873, 2.1457) and A =
−1.1457, B = 0.0873.

We first consider the effect of diffusion on the dynamics of system (3) when τ = 0.
Based on the conclusions of Theorem 1 and Remark 1, the positive equilibrium (u0, v0)
is always locally asymptotically stable without or with diffusion as is shown in Fig. 2.
This result suggests that the spatial diffusion in cell cycle systems is not a critical factor
that can induce periodic oscillations.

We then turn to explore the effect of time delay on system (3) when τ > 0. With the
parameters in (40), we can get τ0

∗ = τ0
0 = 7.5954, τ0

1 = 7.9559.
According to the result in Theorem 2(i), the equilibrium (u0, v0) is asymptotically

stable when τ < τ0
∗ . Figure 3 exhibits the simulation result when τ = 6, and the system

finally converges to the positive equilibrium (u0, v0).
From Theorem 2(ii), if τ crosses τ0

∗ , the positive equilibrium (u0, v0) loses its stability
and Hopf bifurcation occurs. Further, by (39), we obtain c1(0) ≈ −20.8818 − 37.4043i,
λ′(τ0

0 ) = 0.0055 − 0.0255i, β2 ≈−41.7636< 0, µ2 ≈ 3826.4465> 0, T2 ≈ 65.0458 > 0
when τ0

0 = 7.5954. Then, from Theorem 3 it follows that the direction of the bifurcation
is forward, and the bifurcating periodic solutions are locally stable, see Fig. 4. In addition,
the period of bifurcating periodic solutions increases since T2 > 0.

By Theorem 2(iii), if τ is increasing across τ0
1 , then the bifurcating periodic solutions

are spatially inhomogeneous, see Fig. 5.
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Figure 2. The positive stable equilibrium (u0, v0). Here τ = 0 and the initial condition is (0.131, 3.2186).
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Figure 3. The positive stable equilibrium (u0, v0). Here τ = 6 < τ0∗ and the initial condition is (0.1048,
2.5748).
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Figure 4. The numerical simulation of spatially homogeneous and stable periodic solution to system (3) when
τ = 7.8 > τ0∗ , and the initial condition is (0.131, 3.2186).
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Figure 5. The numerical simulation of spatially inhomogeneous and unstable periodic solution to system (3)
when τ = 9 > τ01 . The initial condition is (u(x, 0), v(x, 0)) = (0.0873x, −2.1457x + 4.2914) if x 6 2
and (u(x, 0), v(x, 0)) = (−0.0873x+ 0.3492, 2.1457x− 4.2914) if x > 2.

6 Conclusion and discussion

A growing number of mathematical models have shown that the spatial diffusion may play
a important role in the dynamics of various ecosystems [25], epidemic spread [2, 4] and
some genetic regulatory network. In this paper, we present a delayed diffusive model to
investigate the spatiotemporal dynamics of the cell cycle system. Our theoretical analysis
indicates that the diffusion may not play a crucial role in the generation of periodic
oscillation. However, the time delay is more important, which determines the stability
of the equilibrium: when the time delay is less than the critical value τ0

∗ , the equilibrium
is locally asymptotically stable. As τ increases and crosses τ0

∗ , the equilibrium (u0, v0)
loses its stability and Hopf bifurcation occurs. Furthermore, we obtain a series of critical
time delays, where the bifurcating periodic solutions are spatially inhomogeneous.

Bistability is a common phenomena of cellular function, which is involved in many bi-
ological systems such as cell cycle progression [5–7], cell differentiation [11,29], as well
as the development of cancer [13,24]. Although we do not consider the bistability, which
originates from the positive feedback loops, in our model, the results in [5] show that the
bistable steady states may accelerate the spatial activation of Cdks in Xenopus cell cycle.
Also, trigger waves can be observed experimentally. Therefore, we will explore the effect
of bistability on the spatiotemporal dynamics of cell cycle systems in the future work.

Acknowledgment. The authors would like to thank Professor Wang Wei-ming (Huaiyin
normal University) for his valuable discussion on numerical simulations.
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