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Abstract. In this paper, we manifest some coincidence and common fixed point theorems for four
self-mappings satisfying Círíc-type and Hardy–Rogers-type (αs, F )-contractions defined on an
αs-complete b-metric space. We apply these results to infer several new and old corresponding
results in ordered b-metric spaces and graphic b-metric spaces. Our work generalizes several
recent results existing in the literature. We present examples to validate our results. We discuss an
application of main result to show the existence of common solution of the system of Volterra-type
integral equations.

Keywords: fixed point, four mappings, αs-complete b-metric space, (αs, F )-contraction.

1 Introduction

The Banach contraction principle plays a fundamental role in metric fixed point theory,
and a large number of researchers revealed many fruitful generalizations of this result
in various directions. One of these generalizations is known as F -contraction presented
by Wardowski [32]: every F -contraction defined on complete metric space has a unique
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fixed point. The concept of F -contraction proved to be a milestone in fixed point theory
and numerous research papers on F -contraction have been published (see, for instance,
[1, 3–5, 11, 13, 20, 23, 24, 27, 29–31]).

In 2012, Samet et al. [26] investigated the idea of (α,ψ)-contractive and α-admissible
mappings and established some significant fixed point results for such kind of mappings
defined on a complete metric space. Subsequently, Salimi et al. [25] and Hussain et al.
[14–16] improved the concept of α-admissibility and proved some important (common)
fixed point theorems.

In 1989, Bakhtin [7] investigated the concept of b-metric space. However, Czerwik
[10] initiated the study of fixed point of self-mappings in a b-metric space and proved an
analogue of Banach’s fixed point theorem. Since then, numerous research articles have
been published comprising fixed point theorems for various classes of single-valued and
multi-valued operators in b-metric spaces (see, for example, [12, 20, 21, 28]).

Recently, Cosentino et al. [9] established a fixed point result for Hardy–Rogers-type
F -contraction, and Minak et al. [22] presented a fixed point result for Círíc-type general-
ized F -contraction.

We bring into use the idea of Círíc-type and Hardy–Rogers-type (αs, F )-contractions
based on four self-mappings defined on a b-metric space. We present some common fixed
point results for four self-mappings satisfying such kind of contractions on the αs-com-
plete b-metric space. We apply our results to infer several new and old results. We present
ordered b-metric and graphic b-metric versions of these theorems as consequences. We
discuss an application of main result to show the existence of common solution of the
system of Volterra-type integral equations.

2 Preliminaries

We denote the set of natural numbers, rational numbers, (−∞,+∞), (0,+∞), and
[0,+∞) by N, Q, R, R+, and R+

0 , respectively. We bring back into reader’s mind some
definitions and properties of b-metric.

Definition 1. (See [10].) Let M be a nonempty set, and s > 1 be a real number.
A mapping d∗ : M × M → R+

0 is said to be a b-metric if, for all θ, ρ, σ ∈ M , we
have:

(d∗1) θ = ρ if and only if d∗(θ, ρ) = 0,
(d∗2) d∗(θ, ρ) = d∗(ρ, θ),
(d∗3) d∗(θ, ρ) 6 s[d∗(θ, σ) + d∗(σ, ρ)].

In this case, the triplet (M,d∗, s) is called a b-metric space (with coefficient s).

Remark 1. Definition 1 allows us to remark that b-metric space is effectually more
general than metric space as a b-metric is a metric when s = 1. It is worth to mention that
the b-metric structure produces some differences to the classical case of metric spaces: the
b-metric on a nonempty set M need not be continuous, open balls in such spaces need not
be open sets and so on. The following example describes the significance of a b-metric.
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Example 1. Let (M,d) be a metric space and d∗(θ, ρ) = (d(θ, ρ))r, r > 1, is a real
number. Then d∗ is b-metric with s = 2r−1. Obviously, (d∗1) and (d∗2) of Definition 3 are
satisfied. If 1 < r <∞, then the convexity of the function f(θ) = θr (θ > 0) implies(

j + l

2

)r
6

1

2

(
jr + lr

)
that gives (j + l)r 6 2r−1(jr + lr). Thus, for all θ, ρ, σ ∈M , we have

d∗(θ, σ) =
(
d(θ, σ)

)r
6
(
d(θ, ρ) + d(ρ, σ)

)r
6 2r−1

[(
d(θ, ρ)

)r
+
(
d(ρ, σ)

)r]
= 2r−1

[
d∗(θ, ρ) + d∗(ρ, σ)

]
.

Therefore, d∗(θ, ρ) 6 s[d∗(θ, ρ)+d∗(ρ, σ)], where s = 2r−1, which shows that (M,d∗, s)
is a b-metric space. Nevertheless, if (M,d) is a metric space, then (M,d∗, s) may not
be a metric space. Indeed, if M = R and d(θ, ρ) = |θ − ρ| (a usual metric), then
d∗(θ, ρ) = [d(θ, ρ)]2 does not define a metric on M .

For the notions like convergence, completeness, Cauchy sequence in the setting of
b-metric spaces, the reader is referred to Aghajani et al. [2], Czerwik [10], Amini-Harandi
[6], Huang et al. [12], Khamsi and Hussain [21].

In line with Wardowski [32], Cosentino et al. [8] investigated a nonlinear function
F : R+ → R complying with the following axioms:

(F1) F is strictly increasing.
(F2) For each sequence {rn} of positive numbers, limn→∞ rn = 0 if and only if

limn→∞ F (rn) = −∞.
(F3) For each sequence {rn} of positive numbers, limn→∞ rn = 0, there exists θ ∈

(0, 1) such that limrn→0+(rn)
θF (rn) = 0.

(F4) τ + F (srn) 6 F (rn−1) implies τ + F (snrn) 6 F (sn−1rn−1) for each n ∈ N
and some τ > 0.

We denote the set of all functions satisfying the conditions (F1)–(F4) by Fs.

Example 2. (See [8].) Let F : R+ → R be defined by

(a) F (r) = ln(r);
(b) F (r) = r + ln(r).

It is easy to check that functions given in (a) and (b) are members of Fs.

Definition 2. Let (M,d∗, s) be a b-metric space, S : M → M and αs : M ×M → R+
0

be two mappings. The mapping S is said to be an αs-admissible if

αs(r1, r2) > s2 =⇒ αs
(
S(r1), S(r2)

)
> s2 for all r1, r2 ∈M.

Definition 3. Let (M,d∗, s) be a b-metric space, S : M → M and αs : M ×M → R+
0

be two mappings. The mapping S is said to be a triangular αs-admissible mapping if:
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(i) αs(r1, r2) > s2 implies αs(S(r1), S(r2)) > s2, r1, r2 ∈M ;
(ii) αs(r1, r3) > s2, αs(r3, r2) > s2 imply αs(r1, r2) > s2 for all r1, r2, r3 ∈M .

Definition 4. Let (M,d∗, s) be a b-metric space and f, g :M →M and αs :M ×M →
R+

0 be three mappings. The pair (f, g) is said to be:

(i) weakly αs-admissible pair if αs(f(r), gf(r)) > s2 and αs(g(r), fg(r)) > s2 for
all r ∈M ;

(ii) partially weakly αs-admissible pair if αs(f(r), gf(r)) > s2 for all r ∈M .

Let f−1(r) = {m ∈M : f(m) = r}.

Definition 5. Let (M,d∗, s) be a b-metric space and f, g, h :M →M be three mappings
such that f(M) ∪ g(M) ⊆ h(M) and αs as defined in Definition 2. The pair (f, g) is
said to be:

(i) weakly αs-admissible pair with respect to h if and only if αs(f(r1), g(r2)) > s2

for all r1 ∈ M , for all r2 ∈ h−1f(r1) and αs(g(r1), f(r2)) > s2 for all r2 ∈
h−1g(r1);

(ii) partially weakly αs-admissible pair of mappings with respect to h if and only if
αs(f(r1), g(r2)) > s2 for all r1 ∈M , for all r2 ∈ h−1f(r1).

Definition 4 allows us to remark that:

(a) if g = f , then f is weakly αs-admissible (partially weakly αs-admissible) with
respect to h;

(b) if h = IM (the identity mapping onM ), then Definition 4 reduces to Definition 3.

Definition 6. Let (M,d∗, s) be a b-metric space and f, g, h :M →M be three mappings
such that f(M) ∪ g(M) ⊆ h(M) and αs as defined in Definition 2. The pair (f, g) is
said to be triangular weakly αs-admissible pair of mappings with respect to h if:

(i) αs(f(r1), g(r2)) > s2 for all r1 ∈M , r2 ∈ h−1f(r1) and αs(g(r1), f(r2)) > s2

for all r2 ∈ h−1g(r1);
(ii) αs(r1, r3) > s2, αs(r3, r2) > s2 imply αs(r1, r2) > s2 for all r1, r2, r3 ∈M .

Definition 7. Let f, g, h : M → M be three self-mappings defined on a b-metric space
(M,d∗, s) such that f(M) ∪ g(M) ⊆ h(M) and αs as defined in Definition 2. The
pair (f, g) is said to be triangular partially weakly αs-admissible pair of mappings with
respect to h if:

(i) αs(f(r1), g(r2)) > s2 for all r1 ∈M , for all r2 ∈ h−1f(r1);
(ii) αs(r1, r3) > s2, αs(r3, r2) > s2 imply αs(r1, r2) > s2 for all r1, r2, r3 ∈M .

Example 3. Let M = [0,∞) and d∗(r1, r2) = |r1− r2|2 for all r1, r2 ∈M be a b-metric
with s = 2,

f(r) =

{
r if r ∈ [0, 1);

1 if r ∈ [1,∞),
g(r) =

{
r1/3 if r ∈ [0, 1);

1 if r ∈ [1,∞),

Nonlinear Anal. Model. Control, 23(5):664–690
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S(r) =

{
r3 if r ∈ [0, 1);

1 if r ∈ [1,∞),
T (r) =

{
r5 if r ∈ [0, 1);

1 if r ∈ [1,∞).

Define αs :M ×M → R+
0 by

αs(r1, r2) =

{
4 + r2 − r1 if r1, r2 ∈ [0, 1);

0 otherwise.

Then the pair (f, g) is triangular weakly αs-admissible pair of mappings with respect
to T , and (g, f) is triangular weakly αs-admissible pair with respect to S.

Indeed, if αs(r1, r2) > s2 and αs(r2, r3) > s2, then r1 − r2 6 0 and r2 − r3 6 0,
which implies r1 − r3 6 0. Hence, αs(r1, r3) = 4 + r3 − r1 > s2. To prove that (f, g)
is partially weakly αs-admissible pair of mappings with respect to T , let r1, r2 ∈ M be
such that r2 ∈ T−1f(r1), that is T (r2) = f(r1), thus, we have r52 = r1 or r2 = r

1/5
1 . As

g(r2) = r
1/15
1 > r1 = f(r1) for all r1 ∈ [0, 1). Thus, αs(fr1, gr2) > s2. Hence, (f, g)

is partially weakly αs-admissible pair of mappings with respect to T . Similarly it can be
proved that (g, f) is partially weakly αs-admissible pair of mappings with respect to S.

In line with the concept of α-completeness for a metric space introduced by Hussain
et al. [15], which is weaker than the concept of completeness, we introduce

Definition 8. Let (M,d∗, s) be a b-metric space and αs as defined in Definition 2. The
b-metric space M is said to be αs-complete if and only if every Cauchy sequence {rn} in
M such that αs(rn, rn+1) > s2 for all n ∈ N converges in M .

If M is a complete metric space, then M is also an αs-complete metric space, but the
converse is not true. Following example explains this fact.

Example 4. LetM=(0,∞) and the b-metric d∗ :M×M→ [0,∞) given by d∗(r1, r2)=
|r1 − r2|2 for all r1, r2 ∈M . Define αs :M ×M → [0,∞):

αs(r1, r2) =

{
4e|r1−r2| if r1, r2 ∈ [1, 3];

0 otherwise.

It is easy to see that (M,d∗, s) is not a complete b-metric space, but (M,d∗, s) is
an αs-complete b-metric space. Indeed, if {rn} is a Cauchy sequence in M such that
αs(rn, rn+1) > 4 for all n ∈ N, then rn ∈ [1, 3] for all n ∈ N. Since [1, 3] is a closed
subset of R, we see that ([1, 3], d∗, 2) is a complete b-metric space, and then there exists
r ∈ [1, 3] such that rn → r as n→∞.

Definition 9. Let (M,d∗, s) be a b-metric space and αs as defined in Definition 2. We
say the self-mapping T is an αs-b-continuous mapping on (M,d∗, s) if, for given r ∈M
and sequence {rn}, limn→∞ d∗(rn, r) = 0 and αs(rn, rn+1) > s2 for all n ∈ N imply
limn→∞ d∗(T (rn), T (r)) = 0.
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Example 5. Let M = [0,∞) and d∗ :M ×M → [0,∞), d∗(r1, r2) = |r1 − r2|2 for all
r1, r2 ∈M . Define

T (r) =

{
sin(πr), r ∈ [0, 1];

cos(πr) + 2, r ∈ (1,∞),
αs(r1, r2) =

{
r31 + r32 + 4, r1, r2 ∈ [0, 1];

0, otherwise.

Then, clearly, T is not continuous on M , however, T is an αs-continuous.

Definition 10. Let (M,d∗, s) be a b-metric space and αs as defined in Definition 2.
The pair of self-mappings (f, g) is said to be an αs-compatible if limn→∞ d∗(fg(rn),
gf(rn)) = 0 whenever {rn} is a sequence in M such that αs(rn, rn+1) > s2 and
limn→∞ f(rn) = limn→∞ g(rn) = t for some t ∈M .

Remark that if (f, g) is a compatible pair, then (f, g) is also an αs-compatible pair,
but the converse is not true. The following example illustrates this fact.

Example 6. Let M = [1,∞) and d∗ :M ×M → [0,∞), d∗(r1, r2) = |r1 − r2|2 for all
r1, r2 ∈M , then (M,d∗, 2) is a b-metric space. Define

f(r) =

{
3, r ∈ [1, 3];

7, r > 3,
g(r) =

{
12− 3r, r ∈ [1, 3];

8, r > 3,

and

αs(r1, r2) =

{
5, r1, r2 ∈ [1, 3];

0, otherwise.

Let us consider {rn} be a sequence such that αs(rn, rn+1) > s2 and limn→∞ f(rn) =
limn→∞ g(rn), then rn = 3. It is clear that limn→∞ f(rn) = limn→∞ g(rn) = 3,
and thus, we obtain that limn→∞ gf(rn) = limn→∞ fg(rn) = 3. Hence, (f, g) is
an αs-compatible pair. Now if we consider tn = 3 − 1/n, then limn→∞ f(tn) =
limn→∞ g(tn) = 3, but

lim
n→∞

gf(tn) = 3 6= lim
n→∞

fg(tn) = lim
n→∞

f

(
3 +

3

n

)
= 7.

Consequently, (f, g) is not compatible pair.

Definition 11. (See [18].) Let f and T be self-mappings defined on a nonempty set M .
If f(r) = T (r) for some r ∈ M , then r is called a coincidence point of f and T . Two
self mappings f and T defined on M are said to be weakly compatible if they commute
at their coincidence points, that is if f(r) = T (r) for some r ∈M , then fT (r) = Tf(r).

Example 7. LetM = R and T, f :M →M be given by T (r) = 6r−5 and f(r) = 5r−4
for all r ∈M . Then f , T are weakly compatible mappings for coincidence point r = 1.

Definition 12. Let (M,d∗, s) be a b-metric space and αs as defined in Definition 2.
The space (M,d∗, s) is said to be αs-regular if, for any sequence {rn} in M , following
condition holds: if rn → r and αs(rn, rn+1) > s2 for all n ∈ N, then αs(rn, r) > s2 for
all n ∈ N.
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Lemma 1. Let (M,d∗, s) be a b-metric space. If there exist two sequences {rn}, {sn}
such that

lim
n→∞

d∗(rn, sn) = 0 and lim
n→∞

rn = t for some t ∈M,

then limn→∞ sn = t.

Proof. By triangle inequality, we have d∗(sn, t) 6 s[d∗(sn, rn) + d∗(rn, t)], and the
result follows from it by applying limit as n→∞.

3 Fixed point theorems

Recently, Minak et al. [22] and Cosentino et al. [9] have employed Ćirić-type and Hardy–
Rogers-type contractive conditions, respectively, on T in their definition of an F -contrac-
tion and found a unique fixed point of T in the context of a metric space. We introduce the
notion of (αs, F )-contraction by imposing some generalized type contractive conditions
in terms of four self-mappings defined on a b-metric space and find their coincidence
and common fixed points. We apply these results to obtain coincidence and common
fixed points of four self-mappings defined on partially ordered b-metric space and graphic
b-metric space.

Let (M,d∗, s) be a b-metric space and f, g, S, T :M →M be self-mappings and αs
as defined in Definition 2. We define the set γf,g,αs

by

γf,g,αs
=
{
(α, β) ∈M ×M : αs

(
S(α), T (β)

)
> s2 and d∗

(
f(α), g(β)

)
> 0
}
.

Let

M1(α, β) = max

{
d∗
(
S(α), T (β)

)
, d∗

(
f(α), S(α)

)
, d∗

(
g(β), T (β)

)
,

d∗(S(α), g(β)) + d∗(f(α), T (β))

2s

}
.

The following theorem is one of our main results.

Theorem 1. Let M be a nonempty set and αs as defined in Definition 2. Let f , g, S, T
be αs−b-continuous self-mappings defined on an αs-complete b-metric space (M,d∗, s)
such that f(M) ⊆ T (M), g(M) ⊆ S(M). Suppose that for all (r1, r2) ∈ γf,g,αs

, there
exist F ∈ Fs and τ > 0 such that

τ + F
(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
. (1)

Assume that the pairs (f, S), (g, T ) are αs-compatible and the pairs (f, g) and (g, f)
are triangular partially weakly αs-admissible with respect to T and S, respectively.
Then the pairs (f, S), (g, T ) have the coincidence point (say) υ in M . Moreover, if
αs(Sυ, Tυ) > s2, then υ is a common fixed point of f , g, S, T .
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Proof. Let r0 ∈ M be an arbitrary point. As f(M) ⊆ T (M), there exists r1 ∈ M such
that f(r0) = T (r1). Since g(r1) ∈ S(M), we can choose r2 ∈ M such that g(r1) =
S(r2). In general, r2n+1 and r2n+2 are chosen in M such that f(r2n) = T (r2n+1) and
g(r2n+1) = S(r2n+2). Define a sequence {jn} in M such that, for all n ∈ N,

j2n+1 = f(r2n) = T (r2n+1) and j2n+2 = g(r2n+1) = S(r2n+2).

As r1 ∈ T−1(fr0), r2 ∈ S−1(gr1) and (f, g) and (g, f) are triangular partially
weakly αs-admissible pair of mappings with respect to T and S, respectively, we have

αs(Tr1 = fr0, gr1 = Sr2) > s2 and αs(gr1 = Sr2, fr2 = Tr3) > s2.

Continuing this way, we obtain αs(Tr2n+1, Sr2n+2) = αs(j2n+1, j2n+2) > s2 and
αs(Sr2n+2, T r2n+3) = αs(j2n+2, j2n+3) > s2 for all n ∈ N. Thus, αs(jn, jn+1) > s2

for all n ∈ N.
We prove that liml→∞ d∗(jl, jl+1) = 0. Set dl = d∗(jl, jl+1). Suppose that dl0 = 0

for some l0. Then jl0 = jl0+1. If l0 = 2n, then j2n = j2n+1 gives j2n+1 = j2n+2.
Indeed, by contractive condition (1), we get

F
(
sd∗(j2n+1, j2n+2)

)
= F

(
sd∗
(
f(r2n), g(r2n+1)

))
6 F

(
M1(r2n, r2n+1)

)
− τ,

for all n ∈ N ∪ {0}, where

M1(r2n, r2n+1)

= max

{
d∗
(
S(r2n), T (r2n+1)

)
, d∗

(
f(r2n), S(r2n)

)
, d∗

(
g(r2n+1), T (r2n+1)

)
,

d∗(S(r2n), g(r2n+1)) + d∗(f(r2n), T (r2n+1))

2s

}
= max

{
d∗(j2n, j2n+1), d

∗(j2n+1, j2n), d
∗(j2n+2, j2n+1),

d∗(j2n, j2n+2) + d∗(j2n+1, j2n+1)

2s

}
= max

{
d∗(j2n, j2n+1), d

∗(j2n+1, j2n+2)
}
.

Since d∗(j2n, j2n+1) = 0, therefore,M(r2n, r2n+1) = d∗(j2n+1, j2n+2), then

F
(
sd∗(j2n+1, j2n+2)

)
6 F

(
d∗(j2n+1, j2n+2)

)
− τ,

which is a contradiction to (F1). Thus, j2n+1 = j2n+2.
Similarly, if l0 = 2n+ 1 then j2n+1 = j2n+2 gives j2n+2 = j2n+3.
Continuing this process, we find that jl is a constant sequence for l > l0. Hence,

liml→∞ d∗(jl, jl+1) = 0 holds true.
Now suppose that dl = d∗(jl, jl+1) > 0 for each l.
We claim that limn→∞ F (d∗(jn, jn+1)) = −∞.
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Let l=2n. As αs(Sr2n, T r2n+1)> s2, d∗(f(r2n), g(r2n−1))>0, so, (r2n, r2n−1)∈
γf,g,αs , by (1), we obtain

F
(
sd∗(j2n, j2n+1)

)
6 F

(
d∗(j2n−1, j2n)

)
− τ (2)

for all n ∈ N. Similarly, for l = 2n− 1,

F
(
sd∗(j2n−1, j2n)

)
6 F

(
d∗(j2n−2, j2n−1)

)
− τ (3)

for all n ∈ N. Hence, by (2) and (3), we have

F
(
sd∗(jn, jn+1)

)
6 F

(
d∗(jn−1, jn)

)
− τ (4)

for all n ∈ N. Let bn = d∗(jn, jn+1) for each n ∈ N, by (4) and property (F4), we have

τ + F
(
snbn

)
6 F

(
sn−1bn−1

)
, n ∈ N.

Repeating the process, we obtain

F
(
snbn) 6 F (b0)− nτ, n ∈ N. (5)

On taking limit n→∞ in (5), we have limn→∞ F (snbn)) = −∞. By property (F2), we
get limn→∞ snbn = 0, and (F3) implies that there exists κ ∈ (0, 1) such that

lim
n→∞

(
snbn

)κ
F
(
snbn

)
= 0.

By (5), for all n ∈ N, we obtain(
snbn

)κ
F
(
snbn

)
−
(
snbn

)κ
F (b0) 6 −

(
snbn

)κ
nτ 6 0. (6)

On taking limit n→∞ in (6), we have

lim
n→∞

n
(
snbn

)κ
= 0.

This implies there exists n1 ∈ N such that n(snbn)κ 6 1 for all n > n1, or

snbn 6
1

n1/κ
for all n > n1. (7)

To prove {jn} a Cauchy sequence, we use (7), and for m > n > n1, we consider

d∗(jn, jm) 6
m−1∑
i=n

sibi 6
∞∑
i=n

sibi 6
∞∑
i=n

1

i1/k
.

The convergence of the series
∑∞
i=n i

−1/κ entails limn,m→∞ d∗(jn, jm) = 0. Hence,
{jn} is a Cauchy sequence in (M,d∗, s). Since {jn} is a Cauchy sequence in the αs-
complete b-metric space M and αs(jn, jn+1) > s2, there exists υ ∈M (say) such that

lim
n→∞

d∗(j2n+1, υ) = lim
n→∞

d∗(Tr2n+1, υ) = lim
n→∞

d∗(fr2n, υ) = 0
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and
lim
n→∞

d∗(j2n, υ) = lim
n→∞

d∗(Sr2n, υ) = lim
n→∞

d∗(gr2n−1, υ) = 0.

Hence,
Sr2n → υ, fr2n → υ as n→∞.

Now, since (f, S) is αs-compatible pair and αs(j2n, j2n+1) > s2, therefore, we
obtain limn→∞ d∗(fSr2n, Sfr2n) = 0. Moreover, from limn→∞ d∗(fr2n, υ) = 0,
limn→∞ d∗(Sr2n, υ) = 0, and αs-b-continuity of mappings f and S we obtain

lim
n→∞

d∗(fSr2n, fυ) = 0 = lim
n→∞

d∗(Sfr2n, Sυ).

By the triangle inequality, we have

d∗(fυ, Sυ) 6 s
[
d∗(fυ, Sfr2n) + d∗(Sfr2n, Sυ)

]
6 sd∗(fυ, fSr2n) + s2d∗(fSr2n, Sfr2n)

+ s2d∗(Sfr2n, Sυ). (8)

Applying limit as n→∞ in (8), we obtain d∗(fυ, Sυ) 6 0, which yields that fυ = Sυ.
Thus, υ is a coincidence point of f and S. Arguing in a similar manner we can prove that
gυ = Tυ. Let αs(Tυ, Sυ) > s2 and assume that d∗(fυ, gυ) > 0. As υ ∈ γf,g,αs , using
contractive condition (1), we have

F
(
sd∗
(
f(υ), g(υ)

)
6 F

(
M1(υ, υ)− τ, (9)

where

M1(υ, υ) = max

{
d∗
(
S(υ), T (υ)

)
, d∗

(
f(υ), S(υ)

)
, d∗

(
g(υ), T (υ)

)
,

d∗(S(υ), g(υ)) + d∗(f(υ), T (υ))

2s

}
= max

{
d∗
(
f(υ), g(υ)

)
, d∗

(
f(υ), S(υ)

)
, d∗

(
g(υ), T (υ)

)
,

d∗(f(υ), g(υ)) + d∗(f(υ), g(υ))

2s

}
= d∗

(
f(υ), g(υ)

)
.

Using (9), we deduce that fυ = gυ. Hence, fυ = gυ = Tυ = Sυ, that is υ is a coinci-
dence point of f , g, S, T .

We show that υ is a common fixed point of f , g, S, and T . Since S is αs-continuous
and the pair (f, S) is αs-compatible, therefore,

lim
n→∞

Sf(r2n) = S(υ) = lim
n→∞

S2(r2n+2),
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lim
n→∞

d∗
(
fS(r2n), Sf(r2n)

)
= 0,

and by Lemma 1,
lim
n→∞

fS(r2n) = S(υ).

Now put r1 = S(r2n) and r2 = r2n+1 in (1) and suppose on contrary that
d∗(S(υ), υ)>0, we obtain

F
(
sd∗
(
fS(r2n), g(r2n+1)

))
6 F

(
M1

(
S(r2n), r2n+1)

)
− τ, (10)

where

M1(S(r2n), r2n+1) = max

{
d∗
(
S2(r2n), T (r2n+1)

)
, d∗

(
fS(r2n), S

2(r2n)
)
,

d∗
(
g(r2n+1), T (r2n+1)

)
d∗(S2(r2n), g(r2n+1)) + d∗(fS(r2n), T (r2n+1))

2s

}
.

Applying limit as n→∞ in (10) and using continuity of F , we have

F
(
sd∗
(
S(υ), υ) 6 F

(
d∗
(
S(υ), υ

)
− τ < F

(
d∗
(
S(υ), υ

)
,

a contradiction, therefore, d∗(S(υ), υ) = 0 implies S(υ) = υ. Hence, fυ = gυ = Tυ =
Sυ = υ, that is υ is a common fixed point of f, g, S, T .

Remark 2. If we suppose that αs(υ, ω) > s2 for each pair of common fixed point of f ,
g, S, T , then υ is unique. Indeed, if ω is another fixed point of f , g, S, T and assuming
on contrary that d∗(fυ, gω) > 0, then from (1) we have

F
(
sd∗(υ, ω)

)
= F

(
sd∗
(
S(υ), T (ω)

))
6 F

(
M1(υ, ω)

)
− τ, (11)

where

M1(υ, ω) = max

{
d∗
(
S(υ), T (ω)

)
, d∗

(
f(υ), S(υ)

)
, d∗

(
g(ω), T (ω)

)
d∗(S(υ), g(ω)) + d∗(f(υ), T (ω))

2s

}
.

Thus, by (11), we have
F
(
sd∗(υ, ω)

)
< F

(
d∗(υ, ω)

)
,

which is a contradiction. Hence, υ = ω and υ is a unique common fixed point of self-
mappings f , g, S, T .

The following example elucidates Theorem 1.
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Example 8. Let M = [0,∞) and d∗ : M ×M → R+
0 , d∗(r1, r2) = |r1 − r2|2. Define

αs :M ×M → [0,∞) by the formula

αs(r1, r2) =

{
4er1−r2 , r1, r2 ∈M, r1 > r2;

4er2−r1 , r1, r2 ∈M, r2 > r1,

so, (M,d∗, s) is anαs-complete b-metric space with s = 2. Define the mappings f, g, S, T :
M →M for all r ∈M by

f(r) = ln

(
1 +

r

6

)
, g(r) = ln

(
1 +

r

7

)
,

S(r) = e7r − 1, T (r) = e6r − 1.

Clearly, f, g, S, T are αs-continuous self mappings complying with f(M) = T (M) =
g(M) = S(M). We note that the pair (f, S) is an αs-compatible. Indeed, let {rn} be
a sequence in M satisfying αs(rn, rn+1) > s2 and

lim
n→∞

f(rn) = lim
n→∞

S(rn) = t for some t ∈M.

Then
lim
n→∞

∣∣f(rn)− t∣∣2 = lim
n→∞

∣∣S(rn)− t∣∣2 = 0,

equivalently,

lim
n→∞

∣∣∣∣ ln(1 + rn
6

)
− t
∣∣∣∣2 = lim

n→∞

∣∣e7rn − 1− t
∣∣2 = 0

implies

lim
n→∞

∣∣rn − (6et − 6)
∣∣2 = lim

n→∞

∣∣∣∣rn − ln(t+ 1)

7

∣∣∣∣2 = 0.

Uniqueness of limit gives that 6et−6 = ln(t+1)/7, thus, t = 0 is only possible solution.
Due to αs-continuity of f , S, for t = 0 ∈M , we have

lim
n→∞

d∗
(
fS(rn), Sf(rn)

)
= lim
n→∞

∣∣fS(rn)− Sf(rn)∣∣2
=
∣∣f(t)− S(t)∣∣2 = |0− 0|2 = 0.

Similarly, the pair (g, T ) is αs-compatible. To prove that (f, g) is partially weakly
αs-admissible pair of mappings with respect to T , let r1, r2 ∈ M be such that r2 ∈
T−1(f(r1)), that is T (r2) = f(r1). Thus, we have e6r2 − 1 = ln(1 + r1/6) or r2 =
ln(1 + ln(1 + r1/6))/6 as

f(r1) = ln

(
1 +

r1
6

)
> ln

(
1 +

ln(1 + ln(1 + r1
6 ))

42

)
= ln

(
1 +

r2
7

)
= g(r2).
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Thus, αs(fr1, gr2) = 4efr1−gr2 > s2. Hence, (f, g) is partially weakly αs-admissible
pair of mappings with respect to T . To prove that (g, f) is partially weakly αs-admissible
pair of mappings with respect to S, let r1, r2 ∈ M be such that r2 ∈ S−1(g(r1)), that is
S(r2) = g(r1), thus, we have e7r2 − 1 = ln(1 + r1/7) or r2 = ln(1 + ln(1 + r1/7))/7.
Since

g(r1) = ln

(
1 +

r1
7

)
> ln

(
1 +

ln(1 + ln(1 + r1
7 ))

42

)
= ln

(
1 +

r2
6

)
= f(r2),

thus, αs(gr1, fr2) = 4egr1−fr2 > s2. Hence, (g, f) is partially weakly αs-admissible
pair of mappings with respect to S. Now for each r1, r2 ∈M , consider

d∗
(
f(r1), g(r2)

)
=
∣∣f(r1)− g(r2)∣∣2 =

∣∣∣∣ ln(1 + r

6

)
− ln

(
1 +

r

7

)∣∣∣∣2
6

(
r

6
− r

7

)2

=
1

422
|7r − 6r|2 6

1

1764

∣∣e7r − e6r
∣∣2

=
1

1764
d∗
(
T (r1), S(r2)

)
6

1

1764
M1(r1, r2).

The above inequality can be written as

ln 1764 + ln
(
d∗
(
f(r1), g(r2)

))
6 ln

(
M1(r1, r2)

)
.

Define the function F : R+ → R by F (r) = ln(r) for all r ∈ R+ > 0. Hence, for all
r1, r2 ∈M such that d∗(f(r1), g(r2)) > 0, τ = ln(1764), we obtain

τ + F
(
d∗
(
f(r1), g(r2)

))
6 F

(
M(r1, r2)

)
.

Thus, the contractive condition (1) is satisfied for all r1, r2 ∈M . Hence, all the hypothe-
ses of Theorem 1 are satisfied, note that f , g, S, T have a unique common fixed point
r = 0.

The Corollary 1 is a generalization of [19, Thm. 3.1].

Corollary 1. Let M be a nonempty set and αs : M × M → [0,∞) be a function.
Let (M,d∗, s) be an αs-complete metric space and f , g, S, T are αs-continuous self-
mappings on (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M). Suppose that for all
(r1, r2) ∈ γf,g,αs , the inequality

sd∗
(
f(r1), g(r2)

)
6 kM1(r1, r2), (12)

holds. Assume that the pairs (f, S), (g, T ) are αs-compatible and the pairs (f, g) and
(g, f) are triangular partially weakly αs-admissible pair of mappings with respect to T
and S, respectively. Then the pairs (f, S), (g, T ) have the coincidence point υ1 in M .
Moreover, if αs(Sυ1, Tυ1) > s2, then υ1 is a common point of f , g, S, T .
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Proof. For all (r1, r2) ∈ γf,g,αs , we have sd∗(f(r1), g(r2)) 6 kM1(r1, r2). It follows
that τ + ln(d∗(f(r1), g(r2))) 6 ln(M1(r1, r2)), where τ = ln(s/k) > 0. Then the
contraction condition (12) reduces to (1) with F (r) = ln(r), and the application of
Theorem 1 ensures the existence of fixed point.

In the following theorem, we omit the assumption of αs-continuity of f , g, T , S and
replace the αs-compatibility of the pairs (f, S) and (g, T ) by weak compatibility of the
pairs.

Theorem 2. Let f , g, S, T are self-mappings defined on an αs-regular and αs-complete
metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M), and T (M) and S(M)
are closed subsets of M . Suppose that for all (r1, r2) ∈ γf,g,αs

, there exist F ∈ Fs and
τ > 0 such that

τ + F
(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
. (13)

Assume that the pairs (f, S), (g, T ) are weakly compatible and the pairs (f, g) and (g, f)
are triangular partially weakly αs-admissible with respect to T and S, respectively. Then
the pairs (f, S), (g, T ) have the coincidence point υ inM . Moreover, ifαs(Sυ, Tυ) > s2,
then υ is a coincidence point of f , g, S, T .

Proof. In line with the proof of Theorem 1, we know that there exists υ ∈M such that

lim
l→∞

d∗(jl, υ) = 0.

Since T (M) is closed subset of M and {j2n+1} ⊆ T (M), therefore, υ ∈ T (M). Thus,
there exists ω1 ∈M such that υ = T (ω1) and

lim
n→∞

d∗
(
j2n+1, T (ω1)

)
= lim
n→∞

d∗
(
Tr2n+1, T (ω1)

)
= 0.

Similarly, there exists ω2 ∈M such that υ = T (ω1) = S(ω2) and

lim
n→∞

d∗
(
j2n, S(ω2)

)
= lim
n→∞

d∗
(
Sr2n, S(ω2)

)
= 0.

Now since, limn→∞ d∗(Tr2n+1, S(ω2)) = 0, therefore, αs-regularity of M implies
that αs(Tr2n+1, S(ω2)) > s2, and from contractive condition (13) we have

F
(
sd∗
(
f(ω2), g(r2n+1)

))
6 F

(
M1(ω2, r2n+1)

)
− τ (14)

for all n ∈ N ∪ {0}, where

M1(ω2, r2n+1)

= max

{
d∗
(
S(ω2), T (r2n+1)

)
, d∗

(
f(ω2), S(ω2)

)
, d∗

(
g(r2n+1), T (r2n+1)

)
,

d∗(S(ω2), g(r2n+1)) + d∗(f(ω2), T (r2n+1))

2s

}
= max

{
d∗(υ, j2n+1), d

∗(f(ω2), υ
)
, d∗(j2n+2, j2n+1),

d∗(υ, j2n+2) + d∗(f(ω2), j2n+1)

2s

}
.
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When n → ∞ in (14), we obtain f(ω2) = υ = S(ω2), and weakly compatibility of f
and S gives f(υ) = fS(ω2) = Sf(ω2) = S(υ), which shows that υ is coincidence point
of f and S. Similarly, it can be shown that υ is a coincidence point of the pair (g, T ). The
rest of the proof follows from similar arguments as in proof of Theorem 1.

If we set S = T in Theorem 1, we obtain the following result.

Corollary 2. Let f , g, T be self-mappings defined on an αs-complete metric space
(M,d∗, s) such that f(M) ∪ g(M) ⊆ T (M) and T (M) is αs-continuous. Suppose that
for all r1, r2 ∈M with αs(Tr1, T r2) > s2, there exist F ∈ Fs and τ > 0 such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
,

where

M1(r1, r2) = max

{
d∗
(
T (r1), T (r2)

)
, d∗

(
f(r1), T (r1)

)
, d∗

(
g(r2), T (r2)

)
,

d∗(T (r1), g(r2)) + d∗(f(r1), T (r2))

2s

}
.

Assume that either the pair (f, T ) is αs-compatible and f is αs-continuous or (g, T )
is αs-compatible and g is αs-continuous. Then the pairs (f, T ) and (g, T ) have the
coincidence point υ in M provided the pair (f, g) is triangular weakly αs-admissible
pair of mappings with respect to T . Moreover, if αs(Tυ, Tυ) > s2, then υ is a common
point of f , g, T .

If we set S = T and f = g in Theorem 1, we obtain the following result.

Corollary 3. Let f , T be αs-continuous self-mappings defined on an αs-complete metric
space (M,d∗, s) such that f(M) ⊆ T (M). Suppose that for all r1, r2 ∈ M with
αs(Tr1, T r2) > s2, there exist F ∈ Fs and τ > 0 such that

d∗
(
f(r1), f(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), f(r2)

))
6 F

(
M1(r1, r2)

)
,

where

M1(r1, r2) = max

{
d∗
(
T (r1), T (r2)

)
, d∗

(
f(r1), T (r1)

)
, d∗

(
f(r2), T (r2)

)
,

d∗(T (r1), f(r2)) + d∗(f(r1), T (r2))

2s

}
.

Assume that the pair (f, T ) is αs-compatible. Then the mappings f , T have the coinci-
dence point in M provided that the f is triangular weakly αs-admissible mapping with
respect to T . Moreover, if αs(Tυ, Tυ) > s2, then f , T has a common point υ.

Corollary 4. Let f , g, T are self-mappings defined on an αs-regular and αs-complete
metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ T (M), and T (M) is closed
subset ofM . Suppose that for all r1, r2 ∈M with αs(Tr1, T r2) > s2, there exist F ∈ Fs
and τ > 0 such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
,
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where

M1(r1, r2) = max

{
d∗
(
T (r1), T (r2)

)
, d∗

(
f(r1), T (r1)

)
, d∗

(
g(r2), T (r2)

)
,

d∗(T (r1), g(r2)) + d∗(f(r1), T (r2))

2s

}
.

Assume that the pairs (f, T ), (g, T ) are weakly compatible and the pair (f, g) is trian-
gular weakly αs-admissible pair of mapping with respect to T . Then the pairs (f, T ),
(g, T ) have the coincidence point υ in M . Moreover, if αs(Tυ, Tυ) > s2, then υ is a
coincidence point of f , g, T .

Corollary 5. Let f , T are self-mappings defined on an αs-regular and αs-complete
metric space (M,d∗, s) such that f(M) ⊆ T (M) and T (M) is closed subset of M .
Suppose that for all r1, r2 ∈ M with αs(Tr1, T r2) > s2, there exist F ∈ Fs and τ > 0
such that

d∗
(
f(r1), f(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), f(r2)

))
6 F

(
M1(r1, r2)

)
,

where

M1(r1, r2) = max

{
d∗
(
T (r1), T (r2)

)
, d∗

(
f(r1), T (r1)

)
, d∗

(
f(r2), T (r2)

)
,

d∗(T (r1), f(r2)) + d∗(f(r1), T (r2))

2s

}
.

Assume that the pair (f, T ) is weakly compatible and f is triangular weaklyαs-admissible
mapping with respect to T . Then the pair (f, T ) has the coincidence point υ in M .

If we set S = T = IM (identity mapping) in Theorems 1 and 2, we obtain the
following result.

Corollary 6. Let f , g are self-mappings defined on anαs-complete metric space (M,d∗, s).
Suppose that for all r1, r2 ∈M with αs(r1, r2) > s2, there exist F ∈ Fs and τ > 0 such
that

d∗
(
f(r1), f(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
,

where

M1(r1, r2) = max

{
d∗(r1, r2), d

∗(f(r1), r1), d∗(g(r2), r2),
d∗(r1, g(r2)) + d∗(f(r1), r2)

2s

}
.

Assume that the pair (f, g) is triangular weakly αs-admissible pair of mappings. Then f ,
g has a common fixed point υ in M provided that either f or g is αs-continuous, or M is
αs-regular.
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Following theorem shows that the arguments given in the proof of Theorem 1 hold
equally good if we replaceM1(r1, r2) with one ofMi(r1, r2), i = 2, 3, 4, 5, 6.

Theorem 3. Let f , g, S, T are αs-continuous self-mappings defined on an αs-complete
b-metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M). Suppose that for
all (r1, r2) ∈ γf,g,αs

, there exist F ∈ Fs and τ > 0 such that

τ + F
(
sd∗
(
f(r1), g(r2)

))
6 F

(
Mi(r1, r2)

)
(15)

holds for one of i = 2, 3, 4, 5, 6, where

M2(r1, r2) = a1d
∗(S(r1), T (r2))+ a2d

∗(f(r1), S(r1))+ a3d
∗(g(r2), T (r2))

+ a4
[
d∗
(
S(r1), g(r2)

)
+ d∗

(
f(r1), T (r2)

)]
with ai > 0, i = 1, 2, 3, 4, such that a1 + a2 + a3 + 2sa4 = 1;

M3(r1, r2) = a1d
∗(S(r1), T (r2))+ a2d

∗(f(r1), S(r1))+ a3d
∗(g(r2), T (r2)),

with a1 + a2 + a3 = 1;

M4(r1, r2) = kmax
{
d∗
(
f(r1), S(r1)

)
, d∗
(
g(r2), T (r2)

)}
with k ∈ [0, 1);

M5(r1, r2) = a1(r1, r2)d
∗(S(r1), T (r2))+ a2(r1, r2)d

∗(f(r1), S(r1))
+ a3(r1, r2)d

∗(g(r2), T (r2))
+ a4(r1, r2)

[
d∗
(
S(r1), g(r2)

)
+ d∗

(
f(r1), T (r2)

)]
with ai(r1, r2), i = 1, 2, 3, 4, are non-negative functions such that

sup
r1,r2∈M

{
a1(r1, r2) + a2(r1, r2) + a3(r1, r2) + 2sa4(r1, r2)

}
= 1;

M6(r1, r2) = a1d
∗(S(r1), T (r2))+ a2 + a3

2

[
d∗
(
f(r1), S(r1)

)
+ d∗

(
g(r2), T (r2)

)]
+
a4 + a5

2s

[
d∗
(
S(r1), g(r2)

)
+ d∗

(
f(r1), T (r2)

)]
with a1 + a2 + a3 + a4 + a5 = 1.

Assume that the pairs (f, S), (g, T ) are αs-compatible and the pairs (f, g) and (g, f)
are triangular partially weakly αs-admissible pair of mappings with respect to T and S,
respectively. Then the pairs (f, S), (g, T ) have the coincidence point υ in M . Moreover,
if αs(Sυ, Tυ) > s2, then υ is a common point of f , g, S, T .

Proof. In line with the beginning part of proof of Theorem 1, for all (r1, r2) ∈ γf,g,αs
,

for some F ∈ Fs and τ > 0, from contractive condition (15) we get

F
(
sd∗(j2n, j2n+1)

)
= F

(
sd∗
(
f(r2n), g(r2n+1)

))
6 F

(
M2(r2n, r2n+1)

)
− τ, (16)
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for all n ∈ N ∪ {0}, where

M2(r2n, r2n+1)

= a1d
∗(S(r2n), T (r2n+1)

)
+ a2d

∗(f(r2n), S(r2n))+ a3d
∗(g(r2n+1), T (r2n+1)

)
+ a4

[
d∗
(
S(r2n), g(r2n+1)

)
+ d∗

(
f(r2n), T (r2n+1)

)]
= a1d

∗(j2n−1, j2n) + a2d
∗(j2n, j2n−1) + a3d

∗(j2n+1, j2n)

+ a4
[
d∗(j2n−1, j2n+1) + d∗

(
j2n, j2n

)
]

= (a1 + a2 + sa4)d
∗(j2n−1, j2n) + (a3 + sa4)d

∗(j2n, j2n+1).

Now from (16) we have

F
(
sd∗(j2n, j2n+1)

)
6 F

(
(a1 + a2 + sa4)d

∗(j2n−1, j2n)

+ (a3 + sa4)d
∗(j2n, j2n+1)

)
− τ. (17)

Since F is strictly increasing, (17) implies

sd∗(j2n, j2n+1) 6 (a1 + a2 + sa4)d
∗(j2n−1, j2n)

+ (a3 + sa4)d
∗(j2n, j2n+1),

(1− a3 − sa4)d∗(j2n, j2n+1) < (s− a3 − sa4)d∗(j2n, j2n+1)

6 (a1 + a2 + sa4)d
∗(j2n−1, j2n),

d∗(j2n, j2n+1) 6
a1 + a2 + sa4
1− a3 − sa4

d∗(j2n−1, j2n).

Since a1 + a2 + a3 + 2sa4 = 1, therefore,

d∗(j2n, j2n+1) 6
a1 + a2 + sa4
1− a3 − sa4

d∗(j2n−1, j2n) = d∗(j2n−1, j2n).

Thus, from (17) we obtain

F
(
sd∗(j2n, j2n+1)

)
6 F

(
d∗(j2n−1, j2n)

)
− τ (18)

for all n ∈ N. Similarly,

F
(
sd∗(j2n−1, j2n)

)
6 F

(
d∗(j2n−2, j2n−1)

)
− τ (19)

for all n ∈ N. Hence, from (18) and (19) we have

F
(
sd∗(jn, jn+1)

)
6 F

(
d∗(jn−1, jn)

)
− τ. (20)

Inequality (20) leads us to remark that {jn} is a Cauchy sequence and remaining part of
the proof can easily be followed from finishing part of the proof of Theorem 1.

ForM3(r1, r2): In line with beginning part of the proof of Theorem 1, for all (r1, r2) ∈
γf,g,αs

, for some F ∈ Fs and τ > 0, from contractive condition (15) we get

F
(
sd∗(j2n, j2n+1)

)
= F

(
sd∗
(
f
(
r2n), g(r2n+1)

))
6 F

(
M3(r2n, r2n+1)

)
− τ, (21)
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for all n ∈ N ∪ {0}, where

M3(r2n, r2n+1)

= a1d
∗(S(r2n), T (r2n+1)

)
+ a2d

∗(f(r2n), S(r2n))+ a3d
∗(g(r2n+1), T (r2n+1)

)
= a1d

∗(j2n−1, j2n) + a2d
∗(j2n, j2n−1) + a3d

∗(j2n+1, j2n)

= (a1 + a2)d
∗(j2n−1, j2n) + a3d

∗(j2n, j2n+1).

Now from (21) we have

F
(
sd∗(j2n, j2n+1)

)
6 F

(
(a1 + a2)d

∗(j2n−1, j2n) + a3d
∗(j2n, j2n+1)

)
− τ. (22)

Since F is strictly increasing, (22) implies

sd∗(j2n, j2n+1) 6 (a1 + a2)d
∗(j2n−1, j2n) + a3d

∗(j2n, j2n+1)

(1− a3)d∗(j2n, j2n+1) < (s− a3)d∗(j2n, j2n+1) 6 (a1 + a2)d
∗(j2n−1, j2n)

d∗(j2n, j2n+1) 6
a1 + a2
1− a3

d∗(j2n−1, j2n).

Since a1 + a2 + a3 = 1, therefore,

d∗(j2n, j2n+1) 6
a1 + a2
1− a3

d∗(j2n−1, j2n) = d∗(j2n−1, j2n).

Thus, from (22) we obtain

F
(
sd∗(j2n, j2n+1)

)
6 F

(
d∗(j2n−1, j2n)

)
− τ (23)

for all n ∈ N. Similarly,

F
(
sd∗(j2n−1, j2n)

)
6 F

(
d∗(j2n−2, j2n−1)

)
− τ (24)

for all n ∈ N. Hence, from (23) and (24) we have

F
(
sd∗(jn, jn+1)

)
6 F

(
d∗(jn−1, jn)

)
− τ. (25)

Inequality (25) leads us to remark that {jn} is a Cauchy sequence and remaining part of
the proof can easily be followed from finishing part of the proof of Theorem 1.

For M4(r1, r2): In line with beginning part of the proof of Theorem 1, for all
(r1, r2) ∈ γf,g,αs

, for some F ∈ Fs and τ > 0, from contractive condition (15) we
get

F
(
sd∗(j2n, j2n+1)

)
= F

(
sd∗
(
f(r2n), g(r2n+1)

))
6 F

(
M4(r2n, r2n+1)

)
− τ

for all n ∈ N ∪ {0}, where

M4(r2n, r2n+1) = kmax
{
d∗
(
f(r2n), S(r2n)

)
, d∗
(
g(r2n+1), T (r2n+1)

)}
= kmax

{
d∗(j2n, j2n−1), d

∗(j2n+1, j2n)
}
.

Remaining part of the proof can easily be followed from the proof of Theorem 1.
Similar arguments hold forM5(r1, r2) andM6(r1, r2).
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4 Results in ordered b-metric spaces

In this section, we present some common fixed point theorems on αs complete b-metric
spaces endowed with an arbitrary binary relation, specially a partial order relation, which
can be regarded as consequences of the results presented in the previous section.

Let (M,d∗, s) be a b-metric space, and let ≺ be a binary relation over M .

Definition 13. Let f and g be two selfmappings on M and ≺ be a binary relation over
M . A pair (f, g) is said to be:

(i) weakly ≺-increasing if f(r) ≺ gf(r) and g(r) ≺ fg(r) for all r ∈M ;
(ii) partially weakly ≺-increasing if f(r) ≺ gf(r) for all r ∈M .

Definition 14. Let f, g, h :M →M be three mappings such that f(M)∪g(M) ⊆ h(M).
The pair (f, g) is said to be transitive weakly ≺-increasing pair of mappings with respect
to h if:

(i) f(r1) ≺ g(r2) for all r1 ∈ M , for all r2 ∈ h−1f(r1) and g(r1) ≺ f(r2)) for all
r2 ∈ h−1g(r1);

(ii) r1 ≺ r3, r3 ≺ r2 imply r1 ≺ r2 for all r1, r2, r3 ∈M .

Definition 15. Let f, g, h :M →M be three mappings such that f(M)∪g(M) ⊆ h(M).
The pair (f, g) is said to be transitive partially weakly≺-increasing pair of mappings with
respect to h if:

(i) f(r1) ≺ g(r2) for all r1 ∈M , for all r2 ∈ h−1f(r1);
(ii) r1 ≺ r3, r3 ≺ r2 imply r1 ≺ r2 for all r1, r2, r3 ∈M .

Let ≺ be a binary relation over M and

αs(r1, r2) =

{
s2 if r1 ≺ r2;
0 otherwise.

By this assumption, we see that the above definitions are special cases from the
definition of weak αs-admissibility and partially weak αs-admissibility.

Definition 16. Let (M,d∗, s) be a b-metric space. It is said to be ≺-complete if and only
if every Cauchy sequence {rn} inM such that rn ≺ rn+1) for all n ∈ N converges inM .

Definition 17. Let (M,d∗, s) be a b-metric space and T : M → M be a mapping. We
say that T is an ≺-continuous mapping on (M,d∗, s) if, for given r ∈ M and sequence
{rn},

lim
n→∞

d∗(rn, r) = 0, rn ≺ rn+1, n ∈ N =⇒ lim
n→∞

d∗
(
T (rn), T (r)

)
= 0.

Definition 18. Let (M,d∗, s) be a b-metric space. The pair (f, g) is said to be an≺-com-
patible if and only if limn→∞ d∗(fg(rn), gf(rn)) = 0, whenever {rn} is a sequence

Nonlinear Anal. Model. Control, 23(5):664–690



684 M. Nazam et al.

in M such that rn ≺ rn+1 and

lim
n→∞

f(rn) = lim
n→∞

g(rn) = t for some t ∈M.

Definition 19. The b-metric space (M,d∗, s) is said to be ≺-regular if, for any sequence
{rn} in M , the following condition holds:

rn → r, rn ≺ rn+1 =⇒ rn ≺ r for all n ∈ N.

Now we are able to remodel Theorems 1 and 2 in the framework of ordered metric
spaces.

Theorem 4. Let f , g, S, T be ≺-continuous self-mappings define on a ≺-complete
b-metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M). Suppose that for
all r1, r2 ∈M with S(r1) ≺ T (r2), there exist F ∈ Fs and τ > 0 such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
.

Assume that the pairs (f, S), (g, T ) are ≺-compatible and the pairs (f, g) and (g, f) are
transitive partially weakly ≺-increasing pair of self-mappings with respect to T and S,
respectively. Then the pairs (f, S), (g, T ) have the coincidence point υ in M . Moreover,
if Sυ ≺ Tυ, then υ is a common point of f , g, S, T .

Proof. Define

αs(r1, r2) =

{
s2 if r1 ≺ r2;
0 otherwise,

and the proof follows from the proof of Theorem 1.

Theorem 5. Let f , g, S, T be ≺-continuous self-mappings defined on a ≺-regular and
≺-complete b-metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M), and
T (M) and S(M) are closed subsets of M . Suppose that for all r1, r2 ∈M with S(r1) ≺
T (r2), there exist F ∈ Fs and τ > 0 such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
.

Assume that the pairs (f, S), (g, T ) are weakly compatible and the pairs (f, g) and
(g, f) are transitive partially weakly ≺-increasing pair of self-mappings with respect to
T and S, respectively. Then the pairs (f, S), (g, T ) have the coincidence point υ in M .
Moreover, if Sυ ≺ Tυ, then υ is a coincidence point of f , g, S, T .

Proof. Define

αs(r1, r2) =

{
s2 if r1 ≺ r2;
0 otherwise,

and the proof follows from proofs of Theorems 1 and 2.
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5 Results in b-metric spaces endowed with graph

Consistent with Jachymski [17], let (M,d∗, s) be a b-metric space and δ denotes the
diagonal of the Cartesian product M ×M . Consider a directed graph G such that the set
V (G) of its vertices coincides withM and the setE(G) of its edges contains all loops. We
assume that G has no parallel edges, so we can identify G with the pair (V (G), E(G)).
Moreover, we may treat G as a weighted graph by assigning to each edge the distance
between its vertices. If x and y are vertices in a graph G, then a path in G from x to y
of length N (N ∈ N0 is a sequence {xi}Ni=1 of N + 1 vertices such that x0 = x and
xN = y, and (xi−1, xi) ∈ E(G) for i = 1, 2, 3, . . . , N .

Recently, some results have appeared in the setting of metric spaces, which are en-
dowed with a graph. The first result in this direction was given by Jachymski [17].

Definition 20. Let f and g be two self-mappings on graphic b-metric space (M,d∗, s).
A pair (f, g) is said to be:

(i) weakly G-increasing if (f(r), gf(r)) ∈ E(G) and (g(r), fg(r)) ∈ E(G) for all
r ∈M ;

(ii) partially weakly G-increasing if (f(r), gf(r)) ∈ E(G) for all r ∈M .

Definition 21. Let f, g, h :M →M be three mappings such that f(M)∪g(M) ⊆ h(M).
The pair (f, g) is said to be transitive weakly G-increasing pair of mappings with respect
to h if:

(i) (f(r1), g(r2)) ∈ E(G) for all r1 ∈M , for all r2 ∈ h−1f(r1) and (g(r1), f(r2)) ∈
E(G) for all r2 ∈ h−1g(r1);

(ii) (r1, r3) ∈ E(G), (r3, r2) ∈ E(G) imply (r1, r2) ∈ E(G) for all r1, r2, r3 ∈M .

Definition 22. Let f, g, h :M →M be three mappings such that f(M)∪g(M) ⊆ h(M).
The pair (f, g) is said to be transitive partially weaklyG-increasing pair of mappings with
respect to h if:

(i) (f(r1), g(r2)) ∈ E(G) for all r1 ∈M , for all r2 ∈ h−1f(r1);
(ii) (r1, r3) ∈ E(G), (r3, r2) ∈ E(G) imply (r1, r2) ∈ E(G) for all r1, r2, r3 ∈M .

Let (M,d∗, s) be a graphic b-metric space, and let

αs(r1, r2) =

{
s2 if (r1, r2) ∈ E(G);

0 otherwise.

By this assumption, we see that the above definitions are special cases from the definition
of weak αs-admissibility and partially weak αs-admissibility.

Definition 23. Let (M,d∗, s) be a graphic b-metric space. It is said to be G-complete if
and only if every Cauchy sequence {rn} inM such that (rn, rn+1) ∈ E(G) for all n ∈ N
converges in M .
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Definition 24. Let (M,d∗, s) be a graphic b-metric space and T : M → M be a map-
ping. We say that T is a G-continuous mapping on (M,d∗, s) if, for given r ∈ M and
sequence {rn}, limn→∞ d∗(rn, r) = 0 and (rn, rn+1) ∈ E(G) for all n ∈ N implies
limn→∞ d∗(T (rn), T (r)) = 0.

Definition 25. Let (M,d∗, s) be a graphic b-metric space. The pair (f, g) is said to
be an G-compatible if and only if limn→∞ d∗(fg(rn), gf(rn)) = 0, whenever {rn}
is a sequence in M such that (rn, rn+1) ∈ E(G) and

lim
n→∞

f(rn) = lim
n→∞

g(rn) = t for some t ∈M.

Definition 26. The graphic b-metric space (M,d∗, s) is said to be G-regular, if for any
sequence {rn} in M , following condition holds:

rn → r, (rn, rn+1) ∈ E(G) =⇒ (rn, r) ∈ E(G), n ∈ N.

Now we are able to remodel Theorems 1 and 2 in the framework of graphic metric
spaces.

Theorem 6. Let f , g, S, T be G-continuous self-mappings defined on a G-complete
graphic b-metric space (M,d∗, s) such that f(M) ⊆ T (M) and g(M) ⊆ S(M). Sup-
pose that for all r1, r2 ∈ M with (S(r1), T (r2)) ∈ E(G), there exist F ∈ Fs and τ > 0
such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
.

Assume that the pairs (f, S), (g, T ) are G-compatible and the pairs (f, g) and (g, f)
are transitive partially weakly G-increasing pair of mappings with respect to T and S,
respectively. Then the pairs (f, S), (g, T ) have the coincidence point (say) υ in M .
Moreover, if (Sυ, Tυ) ∈ E(G), then υ is a common point of f , g, S, T .

Proof. Define

αs(r1, r2) =

{
s2 if (r1, r2) ∈ E(G);

0 otherwise,

and the proof follows from the proof of Theorem 1.

Theorem 7. Let f , g, S, T be G-continuous self-mappings defined on a G-regular and
G-complete graphic b-metric space (M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M),
and T (M) and S(M) are closed subsets of M . Suppose that for all r1, r2 ∈ M with
(S(r1), T (r2)) ∈ E(G), there exist F ∈ Fs and τ > 0 such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
.

Assume that the pairs (f, S), (g, T ) are weakly compatible and the pairs (f, g) and
(g, f) are transitive partially weakly G-increasing pair of mappings with respect to T
and S, respectively. Then the pairs (f, S), (g, T ) have the coincidence point (say) υ inM .
Moreover, if (Sυ, Tυ) ∈ E(G), then υ is a coincidence point of f , g, S, T .
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Proof. Define

αs(r1, r2) =

{
s2 if (r1, r2) ∈ E(G);

0 otherwise,

and the proof follows from proofs of Theorems 1 and 2.

Corollaries 2–6 given above hold equally good in ordered b-metric space and graphic
b-metric space.

We extend Theorem 1 for all r1, r2 ∈M as it follows.

Theorem 8. Let f , g, S, T be self-mappings defined on a complete b-metric space
(M,d∗, s) such that f(M) ⊆ T (M), g(M) ⊆ S(M). If there exist F ∈ Fs and τ > 0
such that

d∗
(
f(r1), g(r2)

)
> 0 =⇒ τ + F

(
sd∗
(
f(r1), g(r2)

))
6 F

(
M1(r1, r2)

)
for all r1, r2 ∈M . Then f , g, S, T have a unique common fixed point in M provided that
S, T are continuous and pairs {f, S}, {g, T} are compatible.

Proof. The arguments follow the same lines as in proof of Theorem 1.

6 Application to a system of integral equations

Let M = C([a, b],R) be the space of all continuous real valued functions defined on
[a, b]. Let the function d∗ :M ×M → [0,∞) be defined by

d∗(u, v) =
(

sup
t∈[a,b]

∣∣u(t)− v(t)∣∣)2
for all u, v ∈ C([a, b],R) and define αs :M ×M → [0,∞) by the rule

αs(u, v) = s2 for all u, v ∈M.

Obviously, (M,d∗, 2) is an αs-complete b-metric space.
We will apply Theorem 1 to show the existence of common solution of the system of

Volterra-type integral equations given by

u(t) = p(t) +

t∫
a

K
(
t, r, S

(
u(t)

))
dr, (26)

w(t) = p(t) +

t∫
a

J
(
t, r, T

(
v(t)

))
dr (27)

for all t ∈ [a, b] and a > 0, where f : M → R is continuous function and K,J :
[a, b]× [a, b]×M → R are lower semi continuous operators. Now we prove the following
theorem to ensure the existence of solution of system of integral equations (26) and (27).
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Theorem 9. Let M=C([a, b],R) and define the mappings f, g :M →M by

fu(t) = p(t) +

t∫
a

K
(
t, r, S

(
u(t)

))
dr,

gu(t) = p(t) +

t∫
a

J
(
t, r, T

(
v(t)

))
dr

for all t ∈ [a, b] and a > 0, where f : M → R is continuous function and K,J : [a, b]×
[a, b] ×M → R are lower semi continuous operators. Assume the following conditions
are satisfied:

(i) there exists a continuous function H :M → [0,∞) such that∣∣K(t, r, S)− J(t, r, T )
∣∣ 6 H(r)

∣∣S(u(t))− T (v(t))∣∣
for each t, r ∈ [a, b] and S, T ∈M ;

(ii) there exists τ > 0, and for each r ∈M , we have

t∫
a

H(r) dr 6

√
e−τ

s
, t ∈ [a, b].

Then the system of integral equations given by (26) and (27) has a solution.

Proof. By assumptions (i) and (ii), we have

d∗
(
fu(t), gv(t)

)
=
(

sup
t∈[a,b]

∣∣fu(t)− gv(t)∣∣)2
=

(
sup
t∈[a,b]

t∫
a

∣∣K(t, r, S(u(t))− J(t, r, T (v(t))))∣∣dr)2

6

(
sup
t∈[a,b]

t∫
a

H(r)
∣∣S(u(t))− T (v(t))∣∣dr)2

6

(√
sup
t∈[a,b]

∣∣S(u(t))− T (v(t))∣∣2 t∫
a

H(r) dr

)2

= d∗
(
S
(
u(t)

)
, T
(
v(t)

))( t∫
a

H(r) dr

)2

6 d∗
(
S
(
u(t)

)
, T
(
v(t)

))e−τ
s

6M1

(
u(t), v(t)

)e−τ
s
.
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Consequently, we obtain sd∗(fu(t), gv(t)) 6 e−τM1(u(t), v(t)), which implies that
τ + ln(sd∗(fu(t), gv(t))) 6 ln(M1(u(t), v(t))). For F (r) = ln(r), all hypotheses of
Theorem 8 are satisfied. Hence, the system of integral equations given in (26) and (27)
has a unique common solution.

7 Conclusion

As we know, the concepts of αs-complete b-metric space, αs-continuity of a mapping, and
αs-compatibility of a pair of mappings are weaker than the concepts of complete metric
space, continuity of a mapping, and compatibility of a pair of mappings, respectively.
Therefore, Theorems 1, 2 and corresponding corollaries enrich the fixed point theory on
F -contraction under weaker conditions.
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