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Abstract. In this manuscript, we provide a framework for the double-Hopf singularity with 1:1
resonance for general delayed differential equations (DDEs). The corresponding normal form up
to the third-order terms is derived. As an application of our framework, a double-Hopf singularity
with 1:1 resonance for a van der Pol oscillator with delayed feedback is investigated to illustrate the
theoretical results.
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1 Introduction

In this research, we study the double-Hopf singularity with 1:1 resonance for the follow-
ing general delayed differential equations (DDEs):

Ẋ(t) = AX(t) +BX(t− 1) + F (Xt, µ), X ∈ Rn, (1)

where

• A and B are real constant n× n matrices;
• F ∈ Ck(Rn+m,Rn) (k > 4) satisfies F (0, µ) = 0 and DFX(0, µ) = 0;
• µ ∈ Rm is the bifurcation parameter.

Obviously, 0 is an equilibrium of system (1), and the characteristic equation of system (1)
at 0 is

f(λ) = det
(
λI −A−Be−λ

)
= 0. (2)
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The dynamical behavior, especially, the bifurcation behavior around the equilibrium 0,
presented by system (1), is generally determined by the distribution of the roots of Eq. (2)
and has been studied extensively by many researchers. Some of the bifurcation results in
literature regarding system (1) and Eq. (2) are summarized in the following.

(i) If Eq. (2) has a pair of purely imaginary roots and other roots have negative
real parts, system (1) may exhibit a Hopf bifurcation; see [5,6,9] and references
therein.

(ii) If Eq. (2) has a double or triple zero root and other roots have negative real parts,
a double or triple zero singularity for system (1) may occur. The mathematical
frameworks for these singularities were established in [3] and [19], where the
explicit conditions were formulated and the normal forms up to order 3 were
derived.

(iii) If Eq. (2) has a simple zero root and a pair of purely imaginary roots and other
roots have negative real parts, a zero-Hopf singularity may occur. Wu and Wang
[18] studied this case for system (1) and provided the explicit conditions for
system (1) to exhibit zero-Hopf singularity and derived the normal forms up to
order 3.

(iv) If Eq. (2) has two pairs of purely imaginary roots ±ω1i and ±ω2i and other
roots have negative real parts, a double-Hopf bifurcation may occur. For the
case ω1/ω2 /∈ Q, Buono and Bélair [2] computed the corresponding normal
form for scalar DDE, and Qesmia and Babram [15] derived the same for systems
of DDEs. Recently, Ma et al. [13] studied a similar double-Hopf bifurcation for
van der Pol-Duffing oscillator with parametric delayed feedback control.

(v) For the case that Eq. (2) has two pairs of purely imaginary roots ±ω1i and ±ω2i
with ω1 = ω2, Guo and Wu [7, 8] studied the following van der Pol oscillator:

ẍ− ε
(
1− x2

)
ẋ+ x = f

(
x(t− τ)

)
, (3)

where f(x(t − τ)) is the delayed feedback for the position x. They established
the explicit conditions such that the corresponding characteristic equation has
a pair of purely imaginary roots with multiplicity 2. Zhang and Guo [21] studied
the double-Hopf bifurcation with 1:1 resonance for system (3). Using the center
manifold reduction method developed in [9], they derived the corresponding nor-
mal forms up to order 2 for f(x) = γx and provided the bifurcation diagrams.

For general DDEs (1), to the authors’ knowledge, the explicit conditions for the
double-Hopf singularity have not been formulated, and the corresponding normal forms
have not been given in the literature, perhaps due to the extreme complexity and difficulty.
In this manuscript, we will focus on deriving the normal forms for system (1) assuming
that a double-Hopf bifurcation occurs. In particular, we study the case that Eq. (2) has
a pair of purely imaginary roots with algebraic multiplicity 2 and geometric multiplic-
ity 1, namely, double-Hopf singularity with 1:1 resonance. The main contribution of this
manuscript is to characterize the center manifold for this singularity and to derive the
corresponding normal forms up to order 3.
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The rest of this manuscript is organized as follows. In Section 2, we formulate and
characterize the double-Hopf singularity for general DDEs with 1:1 resonance. In Sec-
tion 3, we use the normal form theory developed by Faria and Magalhães [5,6] to compute
the normal form for system (1) up to order 3. In Section 4, to illustrate our theoretical
results, we study a double-Hopf singularity for the van der Pol oscillator with delayed
feedback (3). The normal form up to order 3 is derived. Finally, the manuscript ends with
a conclusion in Section 5.

2 The double-Hopf singularity of the general DDEs with 1:1 reso-
nance

In this section, we characterize the double-Hopf singularity for the general DDEs with
1:1 resonance. Write system (1) in the following form:

Ẋ(t) = LXt + F (Xt, µ), (4)

where LXt = AX(t) + BX(t − 1). Define C := C([−1, 0],Rn) with supreme norm
and Xt ∈ C by Xt(θ) = X(t + θ), −1 6 θ 6 0. Here L : C → Rn is a bounded
linear operator and F : C × Rm → Rn a Ck (k > 4) function with F (0, µ) = 0 and
DXF (0, µ) = 0. Consider the following linear system:

Ẋ(t) = LXt. (5)

Since L is a bounded linear operator, L can be represented by a Riemann–Stieltjes
integral

Lϕ =

0∫
−1

dη(θ)ϕ(θ) ∀ϕ ∈ C

by the Riesz representation theorem, where η(θ) (θ ∈ [−1, 0]) is an n×n matrix function
of bounded variation. Let I be the n× n identity matrix, and define

∆(λ) = λI −
0∫
−1

eλθ dη(θ).

Let A0 be the infinitesimal generator for the solution semigroup defined by system (5)
such that

A0ϕ = ϕ̇, D(A0) =
{
ϕ ∈ C1

(
[−1, 0],Rn

)
: ϕ̇(0) = Lϕ

}
.

Define the bilinear form between C and C∗ = C([0, 1],Rn∗) (where Rn∗ is the space of
all n-dimensional row vectors by

〈ψ,ϕ〉 = ψ(0)ϕ(0)−
0∫
−1

θ∫
0

ψ(ξ − θ) dη(θ)ϕ(ξ) dξ ∀ψ ∈ C∗, ∀ϕ ∈ C.

Nonlinear Anal. Model. Control, 24(2):241–260



244 X.P. Wu, L. Wang

The adjoint of A0 is defined by A∗0

A∗0ψ = −ψ̇, D(A∗0) =

{
ψ ∈ C1

(
[0, 1],Rn∗

)
: ψ̇(0) = −

0∫
−1

ψ(−θ) dη(θ)

}
.

Since LXt = AX(t) +BX(t− 1), η(θ) and ∆(λ) can be expressed, respectively, as

η(θ) =


A+B if θ = 0,

B if − 1 < θ < 0,

0 if θ = −1,

∆(λ) = λI −
(
A+Be−λ

)
.

Using this, we can rewrite the bilinear form as

〈ψ,ϕ〉 = ψ(0)ϕ(0) +

0∫
−1

ψ(ξ + 1)Bϕ(ξ) dξ.

Note that, for a function ϕ ∈ C, Lϕ = Aϕ(0) + Bϕ(−1). For simplicity, we still use
C and C∗ to represent the vector spaces on [0, 1] to the corresponding complex field,
namely,

C = C
(
[0, 1],Cn

)
, C∗ = C

(
[0, 1],Cn∗

)
.

Since we only study the double-Hopf singularity with 1:1 resonance for system (1),
we make the following assumption.

(H) A0 has a simple pair of purely imaginary roots λ = ±iω (ω > 0) with algebraic
multiplicity 2 and geometric multiplicity 1.

Note that A0 has an eigenspace P , which is invariant under the flow (5). Let P ∗

be the space adjoint to P in C∗. Then C can be decomposed as C = P ⊕ Q where
Q = {ϕ ∈ C: 〈ψ,ϕ〉 = 0 ∀ψ ∈ P ∗}.

The following theorem characterizes P and P ∗.

Theorem 1. Assume that assumption (H) holds. Then there exist φ0
1, φ

0
2 ∈ Cn \ {0} and

ψ0
1 , ψ

0
2 ∈ Cn∗ \ {0} that are constant vectors (see in the proof ) such that

φ1(θ) = φ0
1eiωθ, φ2(θ) =

(
φ0

2 + φ0
1θ
)
eiωθ, θ ∈ [−1, 0],

and

ψ1(s) =
(
−sψ0

2 + ψ0
1

)
eiωs, ψ2(s) = ψ0

2eiωs, s ∈ [0, 1],

are (generalized) eigenvectors of A0 and A∗0 corresponding to eigenvalues ωi and −ωi,
respectively; namely,

(A0 − iωI)φ1 = 0, (A0 − iωI)φ2 = φ1,

(A∗0 + iωI)ψ2 = 0, (A∗0 + iωI)ψ1 = ψ2.
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In addition, if (
Be−iω + I

)
φ0

2 −
1

2
Be−iωφ0

1 6∈ R
(
A+Be−iω − iωI

)
,

then

Φ̇ = ΦJ, Ψ̇ = −JΨ,

where Φ = (φ1, φ2, φ̄1, φ̄2), Ψ = (ψ̄1, ψ̄2, ψ1, ψ2)T and

J =


iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω

 . (6)

Furthermore, φ0
1, φ0

2, ψ0
1 , ψ0

2 can be chosen such that 〈Ψ, Φ〉 = I .

Proof. Since±iω (ω > 0) is a root with algebraic multiplicity 2 and geometric multiplic-
ity 1, there exist functions φ1, φ2 such that

(A0 − iωI)φ1 = 0, (A0 − iωI)φ2 = φ1, (7)

and the equation
(A0 − iωI)φ = φ2 (8)

has no solution. Then by the definition of A0, we know that (7) is equivalent to

Lφ1(θ) = iωφ1(0) if θ = 0,

φ̇1(θ) = iωφ1(θ) if − 1 6 θ < 0,

and

Lφ2(θ) = iωφ2(0) + φ1(0) if θ = 0,

φ̇2(θ) = iωφ2(θ) + φ1(θ) if − 1 6 θ < 0.

Thus φ1 and φ2 can be expressed as

φ1(θ) = eiωθφ0
1, φ2(θ) = eiωθ

(
θφ0

1 + φ0
2

)
,

where φ0
1 ∈ Cn \ {0} and φ0

2 ∈ Cn are constant vectors satisfying(
A+Be−iω

)
φ0

1 = iωφ0
1,

(
A+Be−iω − iωI

)
φ0

2 =
(
Be−iω + I

)
φ0

1.

Note that (8) is equivalent to

Lφ(θ) = iωφ(0) + φ2(0) if θ = 0,

φ̇(θ) = iωφ(θ) + φ2(θ) if − 1 6 θ < 0.
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The second equation above gives us φ(θ) = (φ0
3 +φ0

2θ+φ0
1θ

2/2)eiωθ, where φ0
3 ∈ Cn is

a constant vector. Substituting this into the first equation, we see that φ0
3 satisfies(

A+Be−iω − iωI
)
φ0

3 =
(
Be−iω + I

)
φ0

2 −
1

2
Be−iωφ0

1.

Thus the fact that (8) has no solutions is equivalent to(
Be−iω + I

)
φ0

2 −
1

2
Be−iωφ0

1 6∈ R
(
A+Be−iω − iωI

)
.

Therefore P = span{φ1, φ2, φ̄1, φ̄2}.
Similarly, let ψ1, ψ2 be the (generalized) eigenvectors of A∗0 corresponding to the

eigenvalue −iω; namely,

(A∗0 + iωI)ψ2 = 0, (A∗0 + iωI)ψ1 = ψ2.

Then ψ1, ψ2 can be expressed as

ψ2(s) = e−iωsψ0
2 , ψ1(s) = e−iωs

(
−sψ0

2 + ψ0
1

)
,

where ψ0
1 ∈ Cn∗ \ {0} and ψ0

2 ∈ Rn∗ \ {0} are constant vectors satisfying

ψ0
2

(
A+Beiω

)
= −iωψ0

2 , ψ0
1

(
A+Beiω + iω

)
= ψ0

2

(
Beiω + I

)
.

Therefore P ∗ = span{ψ̄1, ψ̄2, ψ1, ψ2}.
Clearly,

〈ψ̄1, φ̄1〉 = 〈ψ̄1, φ2〉 = 〈ψ1, φ1〉 = 〈ψ1, φ2〉 = 〈ψ2, φ̄1〉 = 〈ψ2, φ1〉 = 0,

and
〈ψ̄1, φ1〉 6= 0, 〈ψ̄2, φ2〉 6= 0.

In fact, we can choose ψ1, ψ2 such that

〈ψ̄1, φ1〉 = 1, 〈ψ̄2, φ2〉 = 1.

This finishes the proof the theorem.

From the proof of this theorem we can get the following equivalent conditions to
assumption (H).

Corollary 1. Assumption (H) is equivalent to the following conditions:

(H1) rank(A+Be−iω − iωI) = n− 1;
(H2) if ker(A+Be−iω − iωI) = span{φ0

1}, then(
Be−iω + I

)
φ0

1 ∈ R
(
A+Be−iω − iωI

)
;

(H3) if (Be−iω + I)φ0
1 = (A+Be−iω − iωI)φ0

2, then(
Be−iω + I

)
φ0

2 −
1

2
Be−iωφ0

1 6∈ R
(
A+Be−iω − iωI

)
.
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3 The Faria–Magalhães normal forms

In this section, we use the idea of Faria and Magalhães [5,6] to conduct a center manifold
reduction and to compute the normal form for system (1) for the double-Hopf singularity
with 1:1 resonance. We assume that assumption (H) holds. Let

BC =
{
ϕ : [−1, 0]→ Cn: ϕ is continuous on [−1, 0), ∃ lim

θ→0−
ϕ(θ) ∈ Cn

}
.

The elements of BC can be expressed as ψ = ϕ+X0ν with ϕ ∈ C, ν ∈ Cn, where

X0(θ) =

{
0 if − 1 6 θ < 0,

I if θ = 0,

and I is the n× n identity matrix. Define the projection π : BC → P by

π(ϕ+X0α) = Φ
[
(Ψ, ϕ) + Ψ(0)ν

]
,

where Φ and Ψ are defined in Section 2. Let F =
∑
j>2 Fj/j! and X = Φx + y with

x = (x1, x2, x̄1, x̄2)T ∈ C4 and y ∈ Q1 := {ϕ ∈ Q: ϕ̇ ∈ C}. Then system (4) becomes

ẋ = Jx+
∑
j>2

1

j!
f1
j (x, y, µ),

ẏ = AQ1y +
∑
j>2

1

j!
f2
j (x, y, µ),

(9)

where J is given in (6) and

f1
j (x, y, µ) = Ψ(0)Fj(Φx+ y, µ),

f2
j (x, y, µ) = (I − π)X0Fj(Φx+ y, µ).

Note that, for each j, the first and the third, and the second and the fourth components of
f1
j (x, 0, µ) are conjugate. On the center manifold, system (9) can be transformed to the

following normal form:

ẋ = Jx+
1

2
g1

2(x, 0, µ) +
1

3!
g1

3(x, 0, 0) +O
(
|µ||x|2 + |x|4

)
, (10)

where g1
j (x, 0, µ) are homogeneous polynomials of degree j in (x, µ). Let Y be a normed

space and j ∈ N. Let Vj(Y ) be the space of homogeneous polynomials with degree j in
a linear space Y . Define M1

j , M2
j to be the operators in Vj(C4) and Vj(kerπ), respec-

tively, by
M1
j p = DxpJx− Jp, M2

j h = DxhJx−AQ1h

with p(x) ∈ Vj(C4), h(x)(θ) ∈ Vj(kerπ). Then Vj(C4) = Im(M1
j ) ⊕ (Im(M1

j ))c. By
the above decompositions, g1

2(x, 0, µ), g1
3(x, 0, µ) can be expressed as

g1
2(x, 0, µ) = Proj(Im(M1

2 ))cf
1
2 (x, 0, µ),

g1
3(x, 0, 0) = Proj(Im(M1

3 ))c f̃
1
3 (x, 0, 0),

Nonlinear Anal. Model. Control, 24(2):241–260
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where

f̃1
3 (x, 0, 0) = f1

3 (x, 0, 0)

+
3

2

[(
Dxf

1
2

)
(x, 0, 0)U1

2 (x, 0) +
(
Dyf

1
2

)
(x, 0, 0)U2

2 (x, 0)
]
,

and where U1
2 and U2

2 are determined by

U1
2 (x, 0) =

(
M1

2

)−1
ProjIm(M1

2 )f
1
2 (x, 0, 0),

(
M2

2U
2
2

)
(x, 0) = f2

2 (x, 0, 0).

Let x = (x, x̄), U1
2 (x, 0) = (U1

2(x, x̄, 0), Ū1
2(x, x̄, 0))T, where x = (x1, x2)T.

Note, for p = (p, p̄)T, where p = (p1, p2)T,

M1
j

(
p

p̄

)
=

(
px px̄

p̄x p̄x̄

)(
J ′ 0
0 J̄ ′

)(
x

x̄

)
−
(
J ′ 0
0 J̄ ′

)(
p

p̄

)
=

(
pxJ

′x + px̄J̄
′x̄− J ′p

p̄xJ ′x + p̄x̄J̄ ′x̄− J̄ ′p̄

)
,

M2
j h = DxhJx−AQ1h = (hx, hx̄)

(
J ′ 0
0 J̄ ′

)(
x

x̄

)
−AQ1h

= hxJ
′x + hx̄J̄

′x̄−AQ1h,

where J ′ =
(

iω 1
0 iω

)
. Define M1

j to be the operators in Vj(C2) by

M1
jp = DxpJ ′x +Dx̄pJ ′x̄− J ′p

with p(x, x̄, µ) ∈ Vj(C2). Then Vj(C2) = Im(M1
j )⊕ (Im(M1

j ))
c. Let

f1
j (x, 0, µ) =

(
f1
j (x, y, µ), f̄1

j (x, y, µ)
)T
.

Thus system (10) can be written as the following form:

ẋ = J ′x +
1

2
g1

2(x, x̄, 0, µ) +
1

3!
g1

3(x, x̄, 0, 0) + h.o.t., (11)

where
g1

2(x, x̄, 0, µ) = Proj(Im(M1
2))cf

1
2 (x, x̄, 0, µ),

g1
3(x, x̄, 0, µ) = Proj(Im(M1

3))c f̃
1
3 (x, x̄, 0, µ),

where

f̃1
3 (x, x̄, 0, 0) = f1

3 (x, x̄, 0, 0) +
3

2

[(
Dxf1

2

)
(x, x̄, 0, 0)U1

2(x, x̄, 0)

+
(
Dx̄f1

2

)
(x, x̄, 0, 0)Ū1

2(x, x̄, 0)

+
(
Dyf

1
2

)
(x, x̄, 0, 0)U2

2 (x, x̄, 0)
]
,
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where
U1

2(x, x̄,0) =
(
M1

2

)−1
f12 (x, x̄,0,0).

Clearly, for p = (p1, p2)T,

M1
j

(
p1

p2

)
=

(
x1

∂p1
∂x1

ωi + x2( ∂p1∂x1
+ ∂p1

∂x2
ωi)− x̄1

∂p1
∂x̄1

ωi + x̄2( ∂p1∂x̄1
− ∂p1

∂x̄2
ωi)− p1ωi− p2

x1
∂p2
∂x1

ωi + x2( ∂p2∂x1
+ ∂p2

∂x2
ωi)− x̄1

∂p2
∂x̄1

ωi + x̄2( ∂p2∂x̄1
− ∂p2

∂x̄2
ωi)− p2ωi

)
.

Define

Ψ =

(
ψ̄11(0) · · · ψ̄1n(0)
ψ̄21(0) · · · ψ̄2n(0)

)
and write

1

2
F2(Φx+ y, µ) = Γ (µ)(x1, x2, x̄1, x̄2)T +

∑
i+j+k+l=2

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2

+

2∑
j=1

n∑
k=1

(
(Bjkxj + B̄jkx̄j)yk[0] + (Cjkxj + C̄jkx̄j)yk[−1]

)
+

n∑
j=1

(
Djy

2
j [0] + Ejy

2
j [−1]

)
+

n∑
j,k=1

Gjkyj [0]yk[−1]

+O
(
|µ|(|y|+ |x|) + |µ|2|x|

)
, (12)

1

6
F3(Φx, 0) =

∑
i+j+k+l=3

Aijkx
i
1x
j
2x̄
k
1 x̄

l
2 +O

(
|µ||x|2

)
,

where Γ (µ) ∈ Cn×4, Aijkl = (A1
ijkl, . . . , A

n
ijkl)

T, Bjk = (B1
jk, . . . , B

n
jk)T, Cjk =

(C1
jk, . . . , C

n
jk)T, Dj = (D1

j , . . . , D
n
j )T, Ej = (E1

j , . . . , E
n
j )T, Gjk = (G1

jk, . . . ,

Gnjk)T ∈ Cn.
Now we want to obtain the explicit expressions of α, β, γ, a, b and c in terms of the

coefficients of f1
1 (x, x̄, 0, µ) and f̃1

3 (x, x̄, 0, µ). Let

f1
2 (x, x̄, 0, µ) = ΨΓ (µ)(x1, x2, x̄1, x̄2)T + Ψ

∑
i+j+k+l=2

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2

=
∑

i+j+k+l=1

Aijkl(µ)xi1x
j
2x̄
k
1 x̄

l
2 +

∑
i+j+k+l=2

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2,

f1
3 (x, x̄, 0, 0) =

∑
i+j+k+l=3

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2, where Aijkl =

(
A

(1)
ijkl

A
(2)
ijkl

)
.
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Note that, according to [4, 8], (10) can be written as the following normal form:

ẋ = J ′x + x1

(
0

P

)
+ x2

(
0

Q

)
,

where
P = α+ β|x1|2 + γ(x1x̄2 − x̄1x2), Q = a+ b|x1|2 + c(x1x̄2 − x̄1x2),

and α, β, γ, a, b and c are complex constants.
Note that A1000,A0100,A0010, and A0001 are linear function of µ and Ψ =

(ψ̄1

ψ̄2

)
. We

calculate g1
1 first.

Lemma 1. In fact,

Proj(Im(M1
1))c

∑
i+j+k+l=1

Aijkl(µ)xi1x
j
2x̄
k
1 x̄

l
2 =

(
0

αx1 + ax2

)
,

α = A
(2)
1000, a = A

(1)
1000 + A

(2)
0100.

Proof. Note that

M1
1

(
x1

0

)
=

(
−x2

0

)
, M1

1

(
x2

0

)
=

(
0

0

)
,

M1
1

(
x̄1

0

)
=

(
2iωx̄1 − x̄2

0

)
, M1

1

(
x̄2

0

)
=

(
2iωx̄2

0

)
,

M1
1

(
0

x1

)
=

(
x1

−x2

)
, M1

1

(
0

x2

)
=

(
x2

0

)
,

M1
1

(
0

x̄1

)
=

(
x̄1

2iωx̄1 − x̄2

)
, M1

1

(
0

x̄2

)
=

(
x̄2

2iωx̄2

)
,

and ∑
i+j+k+l=1

Aijkl(µ)xi1x
j
2x̄
k
1 x̄

l
2

= A
(1)
1000

(
z1

−z2

)
+
(
A

(1)
1000 + A

(2)
0100

)( 0

z2

)
−A

(1)
0100

(
−z2

0

)
+

1

2iω
A

(1)
0010

(
2iωz̄1 − z̄2

0

)
+

1

(2iω)2

(
A

(1)
0010 + 2iωA

(1)
0001 −

1

2iω
A

(2)
0010 −A

(2)
0001

)(
2iωz̄2

0

)
+ A

(2)
1000

(
0

z1

)
+

1

2iω
A

(2)
0010

(
z̄1

2iωz̄1 − z̄2

)
− 1

2iω
A

(2)
0010

(
z̄1

0

)
+

1

2iω

(
1

2iω
A

(2)
0010 + A

(2)
0001

)(
z̄2

2iωz̄2

)
.

We can see that only A
(2)
1000

(
0
z1

)
and (A

(1)
1000 + A

(2)
0100)

(
0
z2

)
are not in Im(M1

1), and hence
we obtain the result in the lemma.
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Lemma 2. Let A ∈ V2(C2). Then there exists a unique u ∈ V2(C2) such that M1
2u = A.

Namely, V2(C2) = Im(M1
2) and hence (Im(M1

2))cu = {0}, and we have

Proj(Im(M1
2))c

∑
i+j+k+l=2

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2 = 0.

Proof. In fact, let

u(x, x̄) =
∑

i+j+k+l=2

uijklx
i
1x
j
2x̄
k
1 x̄

l
2, where uijkl =

(
u

(1)
ijkl

u
(2)
ijkl

)
,

A(x, x̄) =
∑

i+j+k+l=2

Aijklx
i
1x
j
2x̄
k
1 x̄

l
2, where Aijkl =

(
A

(1)
ijkl

A
(2)
ijkl

)
.

Using M1
2u = A and after long but basic computation by Mathematica, we obtain the

expressions of uijkl, i+ j + k + l = 2:

u
(1)
2000 =

1

ω2

[
iωA

(1)
2000 + A

(2)
2000

]
, u

(2)
2000 =

1

ω2
iA

(2)
2000,

u
(1)
1100 =

1

ω3

[
4iA

(2)
2000 + ω

(
−2A

(1)
2000 + iωA

(1)
1100 + A

(2)
1100

)]
,

u
(2)
1100 = − 1

ω2

[
2A

(2)
2000 − iωA

(2)
1100

]
,

u
(1)
0200 = − 1

ω4

[
6A

(2)
2000 + ω

(
2iA

(1)
2000 − 2iA

(2)
1100 + ω

(
A

(1)
1100 −A

(2)
0200 − iωA

(1)
0200

))]
,

u
(2)
0200 = − 1

ω3

[
2iA

(2)
2000 + ω

(
A

(2)
1100 − iωA

(2)
0200

)]
,

u
(1)
0020 =

1

9ω2

(
A

(2)
0020 − 3iωA

(1)
0020

)
, u

(2)
0020 = − iA

(2)
0020

3ω
,

u
(1)
0011 =

1

27ω3

[
4iA

(2)
0020 + 3ω

(
2A

(1)
0020 −A

(2)
0011 + 3iωA

(1)
0011

)]
,

u
(2)
0011 =

1

9ω2

[
2A

(2)
0020 + 3iωA

(2)
0011

]
,

u
(1)
0002 =

1

27ω4

[
2A

(2)
0020 + ω

(
−2iA

(1)
0020 + 3ω

(
A

(1)
0011 −A

(2)
0002 + 3iωA

(1)
0002

)]
,

u
(2)
0002 =

1

27ω3

[
−2iA

(2)
0020 + 3ω

(
A

(2)
0011 + 3iωA

(2)
0002

)]
,

u
(1)
1010 = − 1

ω2

(
A

(2)
1010 − iωA

(1)
1010

)
, u

(2)
1010 =

iA(2)

ω
,

u
(1)
0101 =

1

ω4

[
6A

(2)
1010 + 2iω

(
−A

(1)
1010 + A

(2)
1001 + A

(2)
0110

)
+ ω2

(
−A

(2)
0101 + A

(1)
1001

+ A
(1)
0110 + iωA

(1)
0101

))]
,

u
(2)
0101 =

1

ω3

[
−2iA

(2)
1010 + ω

(
A

(2)
1001 + iωA

(2)
0101

)]
,
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u
(1)
1001 =

1

ω3

[
2iA

(2)
1010 + ω

(
A

(1)
1010 −A

(2)
1001 + iωA

(1)
1001

)]
,

u
(2)
1001 =

1

ω2

(
A

(2)
1010 + iωA

(2)
1001

)
,

u
(1)
0110 =

1

ω3

[
2iA

(2)
1010 + ω

(
A

(1)
1010 −A

(2)
0110 + iωA

(1)
0110

)]
,

u
(2)
0110 =

1

ω2

(
A

(2)
1010 + iωA

(2)
0110

)
,

and hence the proof of the lemma is complete.

From these two lemmas we can see that

g1
2(x, x̄, 0, µ) =

(
0

αx1 + ax2

)
.

Next, we compute g1
3(x, x̄, 0, µ). Using the definition of M1

3 and Mathematica, we have
the following result.

Lemma 3.

Proj(Im(M1
3))cf =

(
0

x1

[
β|x1|2 + γ(x1x̄2 − x̄1x2)] + x2[b|x1|2 + c(x1x̄2 − x̄1x2)

]),
where

f =
∑

i+j+k+l=3

(
aijkl
bijkl

)
xi1x

j
2x̄
k
1 x̄

l
2,

β = b2010, γ = a2010 + b2001, b = 3a2010 + b2001 + b1110,

c =
1

3
(2a2001 − 2b0210 − a1110 + b1101).

It is easy to get this, and hence we omit the detail. Now we have

1

3!
Proj(Im(M1

3))cf
1
3 (x, 0, 0)

=
1

3!
Proj(Im(M1

3))cΨF3(Φx, 0) =
1

3!
Proj(Im(M1

3))cΨAijklx
i
1x
j
2x̄
k
1 x̄

l
2

=

(
0

x1[β1|x1|2 + γ1(x1x̄2 − x̄1x2)] + x2[b1|x1|2 + c1(x1x̄2 − x̄1x2)]

)
,

where

β1 = ψ̄2(0)A2010, γ1 = ψ̄1(0)A2010 + ψ̄2(0)A2001,

b1 = 3ψ̄1(0)A2010 + ψ̄2(0)A2001 + ψ̄2(0)A1110,

c1 =
1

3

(
2ψ̄1(0)A2001 − 2ψ̄2(0)A0210 − ψ̄1(0)A1110 + ψ̄2(0)A1101

)
.
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Next, we calculate U1
2 and U2

2, which are determined by

U1
2(x, x̄, 0) =

(
M1

2

)−1
ProjIm(M1

2)f
1
2 (x, x̄, 0, 0),(

M2
2U

2
2

)
(x, x̄, 0) = f2

2 (x, x̄, 0, 0).

The expression of U1
2(x, x̄, 0) can be attained from the proof of Lemma 1 for A =

f1
2 (x, x̄, 0, 0). Now we work on U2

2 (x, x̄, 0). This is the most difficult part since its com-
putation involves solving linear systems with singular coefficient matrices.

Define h = h(x, x̄)(θ) = U2
2 (x, x̄, 0) and write

h(θ) =

h(1)(θ)
· · ·

h(n)(θ)


= h2000x

2
1 + h0200x

2
2 + h0020x̄

2
1 + h0002x̄

2
2 + h1010|x1|2 + h0101|x2|2

+ h1100x1x2 + h1001x1x̄2 + h0110x2x̄1 + h0011x̄1x̄2,

where hijkl ∈ Q1. Applying the definition of AQ1 and π, we obtain

ḣ− (DxhJ
′x +Dx̄hJ̄

′x̄) = Φ(θ)Ψ(0)F2(Φx, 0), ḣ(0)− Lh = F2(Φx, 0),

where ḣ denotes the derivative of h(θ) relative to θ. Comparing the coefficients of x2
1, x2

2,
x̄2

1, x̄2
2, |x1|2, |x2|2, x1x2, x1x̄2, x2x̄1, x̄1x̄2, we have that h̄0020 = h2000, h̄0002 = h0200,

h̄0011 = h1100 and that hijkl, i+j+k+ l = 2 satisfy the following differential equations,
respectively:

ḣ2000 − 2iωh2000 = 2Φ(θ)Ψ(0)A2000, ḣ2000(0)− L(h2000) = 2A2000, (13)

ḣ0200 − 2iωh0200 − h1100 = 2Φ(θ)Ψ(0)A0200, ḣ0200(0)− L(h0200) = 2A0200,

ḣ1010 = 2Φ(θ)Ψ(0)A1010, ḣ1010(0)− L(h1010) = 2A1010,

ḣ0101 = h0110 + h1001 + 2Φ(θ)Ψ(0)A0101, ḣ0101(0)− L(h0101) = 2A0101,

ḣ1100 − 2iωh1100 = 2h2000 + 2Φ(θ)Ψ(0)A1100, ḣ1100(0)− L(h1100) = 2A1100,

ḣ1001 = h1010 + 2Φ(θ)Ψ(0)A1010, ḣ1001(0)− L(h1001) = 2A1001,

ḣ0110 = h1010 + 2Φ(θ)Ψ(0)A0110, ḣ0110(0)− L(h0110) = 2A0110.

By (12), we have

Dyf
1
2

∣∣
y=0,µ=0

U2
2

= 2

2∑
j=1

n∑
k=1

[
(Bjkxj + B̄jkx̄j)h

(k)(0) + (Cjkxj + C̄jkx̄j)h
(k)(−1)

]
and hence

1

4
Proj(Im(M1

3))cDyf
1
2

∣∣
y=0,µ=0

U2
2

=

(
0

x1

[
β3|x1|2 + γ3(x1x̄2 − x̄1x2)

]
+ x2

[
b3|x1|2 + c3(x1x̄2 − x̄1x2)

]),
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where

β3 =

n∑
k=1

[
B

(2)
1k h

(k)
1010(0) + B̄

(2)
1k h

(k)
2000(0) + C

(2)
1k h

(k)
1010(−1) + C̄

(2)
1k h

(k)
2000(−1)

]
,

γ3 =

n∑
k=1

[
B

(1)
1k h

(k)
1010(0) + B̄

(1)
1k h

(k)
2000(0) +B

(2)
1k h

(k)
1001(0) + B̄

(2)
2k h

(k)
2000(0)

+ C
(2)
1k h

(k)
1001(−1) + C̄

(1)
1k h

(k)
2000(−1) + C

(1)
1k h

(k)
1010(−1) + C̄

(2)
2k h

(k)
2000(−1)

]
,

b3 =

n∑
k=1

[
B

(2)
1k

(
h

(k)
0110(0) + h

(k)
1001(0)

)
+
(
3B

(1)
1k +B

(2)
2k

)
h

(k)
1010(0) + C

(1)
1k

(
h

(k)
0101(−1)

+ h
(k)
1001(−1)

)
+
(
3C

(1)
1k + C

(2)
2k

)
h

(k)
1010(−1) + B̄

(2)
1k h

(k)
1100(0) + C̄

(2)
1k h

(k)
1100(−1)

+
(
3B̄

(1)
1k + B̄

(2)
2k

)
h

(k)
2000(0) +

(
3C̄

(1)
1k + C̄

(2)
2k

)
h

(k)
2000(−1)

]
,

c3 =
1

3

n∑
k=1

[
−
(
B

(2)
1k + 2B

(2)
2k

)
h

(k)
0110(0) +

(
2B

(1)
1k +B

(2)
1k

)
h

(k)
1001(0) +B

(2)
1k h

(k)
0101(0)

−B(2)
2k h

(k)
1010(0)−

(
C

(2)
1k + 2C

(2)
2k

)
h

(k)
0110(−1) +

(
2C

(1)
1k + C

(2)
1k

)
h

(k)
1001(−1)

+ C
(2)
1k h

(k)
0101(−1)− C(2)

2k h
(k)
1010(−1)− B̄(2)

1k

(
2h

(k)
0002(0) + h

(1)
1100(0)

)
+ B̄

(2)
2k h

(k)
1100(0) + 2B̄

(1)
2k h

(k)
2000(0)− 2C̄

(2)
1k

(
2h

(k)
0002(−1) + h

(1)
1100(−1)

)
+ C̄

(2)
2k h

(k)
1100(−1) + 2C̄

(1)
2k h

(k)
2000(−1)

]
.

Next, we compute h2000.

Lemma 4. We have

h2000(θ) = 2e2iωθ

θ∫
0

e−2iωtΦ(t)Ψ(0)A2000 dt+ ce2iωθ,

where c is a constant vector, which can be determined later. See it in the proof of the
lemma.

Proof. From the first equation of (13), we have

h2000(θ) = 2e2iωθ

θ∫
0

e−2iωtΦ(t)Ψ(0)A2000 dt+ c e2iωθ,

where c ∈ C2 is a constant, and hence

ḣ2000(0) = 2Φ(0)Ψ(0)A2000 + 2iωc

and

L(h2000) = 2B

−1∫
0

e−2iω(t+1)Φ(t)Ψ(0)A2000 dt+ L(e2iωθ)c.

https://www.mii.vu.lt/NA



Normal form of double-Hopf singularity with 1:1 resonance 255

From the second equation of (13) we have(
2iωI − L

(
e2iωθ

))
c

= 2
(
I − Φ(0)Ψ(0)

)
A2000 − 2B

0∫
−1

e−2iω(t+1)Φ(t)Ψ(0)A2000 dt.

Since 2iω is not an eigenvalue of L, the matrix (2iωI−L(e2iωθ)) is invertible. So we have

c = 2
(
2iωI − L

(
e2iωθ

))−1

×

[(
I − Φ(0)Ψ(0)

)
A2000 −B

0∫
−1

e−2iω(t+1)Φ(t)Ψ(0)A2000 dt

]
.

We can solve for other hijkl similarly, and for simplicity, we omit the detail. Putting
those results together, we obtain

1

6
g1

3(x, 0, µ) =
(
0, x1

[
(β1 + β2 + β3)|x1|2 + (γ1 + γ2 + γ3)(x1x̄2 − x̄1x2)

]
+ x2

[
(b1 + b2 + b3)|x1|2 + (c1 + c2 + c3)(x1x̄2 − x̄1x2)

])T
+O

(
|µ|2|x|+ |µ||x|2

)
.

Let β = β1 + β2 + β3, γ = γ1 + γ2 + γ3, b = b1 + b2 + b3, c = c1 + c2 + c3. So, after
truncating higher-order terms, we can express system (11) as

ẋ1 = ωix1 + x2,

ẋ2 = ωix2 + αx1 + ax2 + x1

[
β|x1|2 + γ(x1x̄2 − x̄1x2)

]
+ x2

[
b|x1|2 + c(x1x̄2 − x̄1x2)

]
.

(14)

Let x1 = r1eiωθ1 , x2 = r2eiωθ2 , φ = θ1 − θ2, a = aR + iaI , b = bR + ibI , c = cR + icI ,
α = αR + iαI , β = βR + iβI , γ = γR + iγI . Then system (14) becomes

ṙ1 = r2 cos(ωφ),

ṙ2 = αRr2 + αRr1 cos(ωφ)− αIr1 sin(ωφ) + bRr
2
1r2 − 2r1r

2
2 sin(ωφ)

− βIr3
1 sin(ωφ) + βRr

3
1 cos(ωφ)− γIr2

1r2 sin(2ωφ)− γRr2
1r2

+ γRr
2
1r2 cos(2ωφ),

φ̇ = 1− r2 sin(ωφ)

r1
− 1

r2

(
2cRr1r

2
2 sin(ωφ)

+ r1

(
αI cos(ωφ) + αR sin(ωφ) + r2

1

(
βI cos(ωφ) + βR sin(ωφ)

)
+ r2

(
ω + aI + bIr

2
1 − γIr2

1 + γIr
2
1 cos(ωφ) + γRr

2
1 sin(2ωφ)

)))
.

(15)

This is the normal form for the double-Hopf singularity with 1:1 resonance for system (1).
The number of the positive equilibrium points of system (15) corresponds to the number
of limit cycles of system (14) and hence the number of limit cycles of (1).
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4 Example: the van der Pol oscillator with delayed feedback

In this section, we apply the framework developed in Sections 2 and 3 to study a double-
Hopf bifurcation with 1:1 resonance for Eq. (3) in Section 1. For studies of van der Pol
equations, please see [1, 10–12, 14, 16, 20]. For simplicity, we assume that f : R → R is
a C4 function such that

f(x) = γx+ ηx2 + δx3 +O
(
x4
)
.

Then the corresponding characteristic equation at 0 is

λ2 − ελ+ 1− γe−λτ = 0. (16)

Atay [1] showed that, for small e > 0, Eq. (3) possesses both stable and unstable periodic
orbits. Wei and Jiang [16] showed that Eq. (3) undergoes a Hopf bifurcation at the origin
when τ passes through a sequence of critical values and then determined the direction of
the Hopf bifurcation and the stability of the periodic solutions by using the normal form
theory. Wu and Wang [17] showed that Eq. (3) undergoes a zero-Hopf bifurcation at the
origin and gave the corresponding bifurcation diagram near critical values of τ and γ. Let
{ξn}∞n=1 be the monotonic sequence of positive solutions of the equation

x = tanx.

Guo and Wu [8] showed that, for each n ∈ N, when

ε = εn =
2√

2 + ξ2
n

, τ = τn =
√

2 + ξ2
n,

γ = γn =
2

(2 + ξ2
n) cos ξn

,

Eq. (16) has a pair of purely imaginary roots ±ωni with multiplicity 2, where

ωn =
ξn√

2 + ξ2
n

.

This means that Eq. (3) exhibits double-Hopf bifurcation with 1:1 resonance. They
also gave the criteria for the existence of bifurcating periodic solutions and the description
of the bifurcation direction. Now we use the framework developed in Sections 2 and 3 to
obtain the normal form of Eq. (3) for this singularity for n = 1. When n = 1, we have

ξ1 = 4.493409457909064,

and calculations give

ε1 = 0.42456502526584, τ1 = 4.710703615854709,

γ1 = −0.4148884825521903, ω1 = 0.9538722501635843.
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Now we use (ε, τ, γ) near (ε1, τ1, γ1) as bifurcation parameter to study double-Hopf
bifurcation with 1:1 resonance for Eq. (3). Let ε = ε1 + µ1, τ = τ1 + µ2, γ = γ1 + µ3,
x1 = x, x2 = ẋ, t→ t/τ and rewrite Eq. (3) as

ẋ1(t) = (τ1 + µ2)x2(t),

ẋ2(t) = (τ1 + µ2)
[
−x1(t) + (ε1 + µ1)

(
1− x2

1(t)
)
x2(t)

+ (γ1 + µ3)x1(t− 1) + ηx2
1(t− 1) + δx3

1(t− 1)
]

+O
(
‖x‖4

)
.

(17)

Let X =
(
x1

x2

)
. Then system (17) can be written as

Ẋ(t) = LXt + F (Xt, µ),

where

LXt = AX(0) +BX(−1), A =

(
0 τ1
−τ1 τ1ε1

)
, B =

(
0 0

τ1γ1 0

)
,

F (Xt, µ) =
(
0,−µ2x1(0) + (τ1µ1 + ε1µ2)x2(0) + (τ1µ3 + γ1µ2)x1(−1)

− τ1ε1x
2
1(0)x2(0) + τ1ηx

2
1(t− 1) + τ1δx

3
1(−1)

)T
+O

(
‖x‖4 + ‖µ‖2‖x‖

)
.

Now for the above L, we apply Theorem 1 to obtain

ϕ1(θ) = eiω1τ1θφ0
1, ϕ2(θ) = eiω1τ1θ

(
θϕ0

1 + φ0
2

)
,

ψ1(s) = eiω1τ1s
(
−sψ0

2 + ψ0
1

)
, ψ2(s) = eiω1τ1sψ0

2 ,

where

φ0
1 = (1, ω1i)T, φ0

2 =

(
1,

1

τ1
+ ω1i

)T

,

ψ0
1 =

(
c2, −

c1 + c2ε1τ1 + ic2τ1ω1

τ1(ε1 + ω1i)2

)
, ψ0

2 =

(
c1, −

c1
ε1 + ω1i

)
,

and

c1 = 1.0000000000000002− 0.44509631689118i,

c2 = −0.6996851218850385 + 0.44509631689117i.

It is easy to check that

〈ψ̄1, ϕ̄1〉 = 〈ψ̄1, ϕ2〉 = 〈ψ1, ϕ1〉 = 〈ψ1, ϕ2〉 = 〈ψ2, ϕ̄1〉 = 〈ψ2, ϕ1〉 = 0,

〈ψ̄1, ϕ1〉 = 〈ψ̄2, ϕ2〉 = 1.

Let
Φ = (ϕ1, ϕ2, ϕ̄1, ϕ̄2), Ψ = (ψ̄1, ψ̄2, ψ1, ψ2)T.
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Use the algorithm developed in the previous section, we are able to get

α = −4.7107µ1 − 0.953872iµ2 − (4.82057 + 1.07281i)µ3,

β = 2− (0.951697− 0.293811i)η2 − (14.4617 + 3.21843i)δ,

γ = (0.666667− 0.593462i) + (0.608343 + 0.0925879i)η2 + (9.40239 + 3.21843i)δ,

a = (−1.57023 +1.39781i)µ1− (0.495326 + 0.317957i)µ2 + (3.13413 +1.07281i)µ3,

b = (2− 1.78039i) + (1.2711 + 0.369845i)η2 + (28.2072 + 9.65529i)δ,

c = (−0.232722 + 0.0354662i)η2.

Let x1 = r1eiωθ1 , x2 = r2eiωθ2 , θ = θ1 − θ2. Then we have

ṙ1 = r2 cos(4.49341φ), (181)

ṙ2 =
(
2 cos(4.49341θ) +

(
−0.951697 cos(4.49341θ)− 0.293811 sin(4.49341θ)

)
η2

+
(
−14.4617 cos(4.49341θ) + 3.21843 sin(4.49341θ)

)
δ
)
r3
1

+
(
1.3 + 0.666667 cos(8.98682θ) + 0.593462 sin(8.98682θ)

+
(
0.662757 + 0.608343 cos(8.98682θ)− 0.0925879 sin(8.98682θ)

)
η2

+
(
18.8048 + 9.40239 cos(8.98682θ)− 3.21843 sin(8.98682θ)

)
δ
)
r2
1r2

+ r2(−1.57023µ1 − 0.495326µ2 + 3.13413µ3)

+ r1

(
−0.0709324 sin(4.49341θ)η2r2

2 − 4.7107 cos(4.49341θ)µ1

+ 0.953872 sin(4.49341θ)µ2 − 4.82057 cos(4.49341θ)µ3

+ 1.07281 sin(4.49341θ)µ3

)
, (182)

θ̇ =
1

r1r2

((
−0.445096 sin(4.49341θ) +

(
−0.065387 cos(4.49341θ)

+ 0.211798 sin(4.49341θ)
)
η2

+
(
0.716255 cos(4.49341θ) + 3.21843 sin(4.49341θ)

)
δ
)
r4
1

+
(
0.264148 + 0.132074 cos(8.98682θ)− 0.148365 sin(8.98682θ)

+
(
−0.0617031− 0.0206053 cos(8.98682θ)− 0.135386 sin(8.98682θ)

)
η2

+
(
−1.43251− 0.716255 cos(8.98682θ)− 2.09249 sin(8.98682θ)

)
δ
)
r3
1r2

− 0.222548 sin(4.49341θ)r2
2 + r1r2(−0.31108µ1 + 0.0707608µ2 − 0.238752µ3)

+ r2
1

(
0.10358 sin(4.49341θ)η2r2

2 + 1.04836 sin(4.49341θ)µ1

+ 0.212283 cos(4.49341θ)µ2 + 0.238752 cos(4.49341θ)µ3

+ 1.07281 sin(4.49341θ)µ3

))
. (183)

Note that the number of positive equilibrium points corresponds to the number of limit
cycles of the original system (17).
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Figure 1. The VDP oscillator has one limit cycle when µ1 = 0.0001, µ2 = −0.0001, µ3 = −0.0001,
η = −0.1, δ = 0.1 with the initial values x1(t) = −0.001, y(t) = 0.01 for t 6 0.

Choose µ1 = 0.0001, µ2 = −0.0001, µ3 = −0.0001, η = −0.1, δ = 0.1. Then
system (18) has a positive equilibrium point

E(14.474, 32803.3, 0.349578),

and hence system (17) (or Eq. (3)) has a limit cycle as shown in Fig. 1. It is not hard to
check that the eigenvalues of the Jacobian matrix at E are

335.994 + 3205.86i, 335.994− 3205.86i, −333.0,

which implies that the limit cycle is unstable.

5 Conclusion

In this manuscript, we studied the double-Hopf singularity with 1:1 resonance for general
DDEs. We characterized this complicated singularity and derived some equivalent condi-
tions that will guarantee this singularity to occur. The corresponding normal form up to
the third order was derived by using the idea of Faria and Magalhães. The unimaginable
complexity and difficulty of some symbolic manipulation during the derivation were made
possible by using the powerful symbolic software Mathematica. Our results were applied
to a Van der Pol’s oscillator with delayed feedback. The existence of a periodic solution
and its stability were established.
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