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Abstract. In this paper, we study the dynamics of a delayed reaction–diffusion predator–prey
model with anti-predator behaviour. By using the theory of partial functional differential equations,
Hopf bifurcation of the proposed system with delay as the bifurcation parameter is investigated.
It reveals that the discrete time delay has a destabilizing effect in the model, and a phenomenon
of Hopf bifurcation occurs as the delay increases through a certain threshold. By utilizing upper-
lower solution method, the global asymptotic stability of the interior equilibrium is studied. Finally,
numerical simulation results are presented to validate the theoretical analysis.
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1 Introduction

The predator–prey model first proposed by Lotka [11] and Volterra [25] is considered
to be one of the basic models between different species in nature. Based on different
settings, various types of predator–prey models described by differential systems have
been proposed, and rich dynamics of these system have been investigated extensively
[10, 21, 26, 27, 35]. It is noted that most of these models regard predator as winner.
However, in real world, prey can sometimes inflict harm on their predators, which was
called anti-predator behaviour [9]. Ives and Dobson [7] proposed a predator–prey model
to describe anti-predator behaviour. Their results shows that more efficient anti-predator
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behaviour leads to increase in the density of the prey population, reduction in the ratio
of predator-to-prey densities and damped oscillations. Peter and Hiroyuki [1] proposed
a two-prey–one-predator system to investigate how these two consequences are changed if
the prey exhibit adaptive anti-predator behaviour. The results show that the predation rate
on a particular prey often decreases as the prey’s density increases, and the predator then
usually exhibits “negative switching” between prey. However, the presence of adaptive
anti-predator behaviour does not change the short-term mutualism between prey. In this
case, as a prey becomes less common, it achieves a larger growth rate by reducing its
anti-predator effort.

Recently, Tang and Xiao [22] proposed a predator–prey model to describe anti-predator
behaviour as follows:

ẋ(t) = rx

(
1− x

k

)
− βxy

a+ x2
, ẏ(t) =

µβxy

a+ x2
− dy − ηxy,

where x(t) and y(t) are the densities of the prey and the predator at time t, respectively.
r is the intrinsic growth rate of the prey, k is the carrying capacity of the environment,
β is the capture rate of the predator, µ is the conversion rate of prey into predator, d is the
natural death rate of the predator population, and η is the rate of anti-predator behaviour of
prey to the predator population. The studies showed that anti-predator behaviour not only
makes the coexistence of the prey and predator less likely, but also damps the predator–
prey oscillations. Therefore, anti-predator behaviour helps the prey to resist predator
aggression. Similar results on the predator–prey system with anti-predator behaviour were
obtained by [6, 8, 13, 18, 19, 24].

However, we noted that few of these model about anti-predator consider the factor of
delay and diffusion. It is well known that delays, which occur in the interaction between
predator and prey, play a complicated role on a predator–prey system. It can cause the
loss of stability and can induce various oscillations, periodic solutions [4, 5, 29, 30, 32].
Therefore, more realistic models of population interactions should take into account the
effects of delays.

On the other hand, in real life, the species is spatially heterogeneous, and hence,
individuals will tend to migrate towards regions of lower population density to add the
possibility of survival [28]. For this reason, diffusion cannot be ignored in studying the
predator–prey system. There have been many excellent papers with diffusion in a predator–
prey system (see, for example, [2, 3, 12, 20, 23, 33, 34, 36]).

Motivated by the above discussions, let u(x, t) and v(x, t) represent the populations
of prey and predator at time t, respectively. Assume that the predator needs a gestation
period τ to give birth. Then in this case, the corresponding model with homogeneous
Neumann boundary conditions is as follows:

∂u

∂t
= d1∆u+ r1u

(
1− u

K

)
− βuv

a+ u
, (x, t) ∈ Ω × (0,+∞),

∂v

∂t
= d2∆v +

αu(t− τ)v

a+ u(t− τ)
− r2v

2 − ηuv, (x, t) ∈ Ω × (0,+∞),

(11)
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u(x, t) = u0(x, t) > 0, v(x, t) = v0(x, t) > 0, (x, t) ∈ Ω × [−τ, 0],

∂u(t, x)

∂φ
=
∂v(t, x)

∂φ
= 0, t > 0, x ∈ ∂Ω,

(12)

where ∆ denotes the Laplacian operator, namely, ∆ = ∂2/∂x2, d1, d2 > 0 denote the dif-
fusion coefficients associated to u and v. Ω is a bounded domain with a smooth boundary
∂Ω, and φ is the outside normal vector of ∂Ω. The homogeneous Neumann boundary
conditions indicate that there is no population flux across the boundaries. Population
densities of prey and predator are respectively given by u and v. r1 is the intrinsic growth
rate of the prey, K is the carrying capacity of the environment. Here we use Holling II
response function function, and β is the capture rate of the predator, ameasures the extent
to which environment provides protection to prey u, α is the conversion rate of prey into
predator, r2 stands for predator density dependence rate. With the same idea of [22],
we use the term ηuv to model anti-predator behaviour, and η is the rate of anti-predator
behaviour of prey to the predator population.

In the initial conditions, we assume that

u0(x, t), v0(x, t) ∈ C = C
(
[−τ, 0], X

)
,

and X is defined by

X =

{
u ∈W 2,2(Ω):

∂u

∂φ
= 0 on ∂Ω

}
with the product〈·, ·〉.

To the best of our knowledge, few authors deal with the research of delayed diffusive
predator–prey system with anti-predator behaviour. Here we aim to shed some light on
the dynamics of system (1) by trying to answer the following questions: What kind of
conditions can ensure the occurrence of the stability and bifurcation? How the delay affect
the dynamics of system (1)?

The structure of this paper is arranged as follows. In Section 2, we consider the
existence of equilibrium points of system (1), the local stability and the existence of
Turing bifurcation, and the Hopf bifurcation. In Section 3, we use upper-lower solution
method to derive sufficient conditions for the global asymptotic stability of the positive
equilibrium of system (1). In Section 4, some numerical simulations are given to support
our theoretical predictions. In Section 5, a brief discussion is given to conclude this work.

2 Local stability and bifurcation of system (1)

2.1 Existence of equilibrium points

In this section, we will find all possible non-negative equilibria.
Obviously, E0 = (0, 0) and E1 = (K, 0) are always equilibria. Other equilibria

satisfy

r1

(
1− u

K

)
− βv

a+ u
= 0,

αu

a+ u
− r2v − ηu = 0. (2)
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(a) (b) (c)

Figure 1. The blue curves are the prey-nullclines, and the red lines are the predator-isoclines. The three figures
are the possible plots of predator-nullcline for three different values of r1 and η: (a) For r1 = 0.1 and η =
0.015, there is one equilibrium; (b) For r1 = 0.1 and η = 0.025, both the nullclines cross two times, suggesting
there are two equilibria; (c) For r1 = 0.15 and η = 0.018, both the nullclines cross three times, suggesting
there are three equilibria. The other parameter values are a = 0.8, β = 0.5, α = 0.32, r2 = 0.15, K = 15.
(Online version in color.)

By the first equation of (2), we have

v =
r1

β

(
1− u

K

)
(a+ u). (3)

Substitute Eq. (3) into the second equation of (2), we obtain

A1u
3 +A2u

2 +A3u+A4 = 0, (4)

where

A1 =
1

K
, A2 =

2a

K
− r1r2

β
− η,

A3 =
a2

K
+ α− 2a− aη, A4 = −r1r2a

2

β
.

Then, Eq. (4) has at least a positive root u∗. Therefore, the following result is obvious.

Lemma 1. If u∗ < K, then system (1) has at least a positive equilibrium E∗ = (u∗, v∗),
where v∗ = (r1/β)(1− u∗/K)(a+ u∗).

The possible number of equilibria can be better analysed by studying the intersections
of the nullclines, which is one of great feature of planar systems. Let f(u, v) = 0 and
g(u, v) = 0, we show the existence of non-negative equilibria in Fig. 1.

Remark 1. From Fig. 1 we obtained that system (1) may have one, two or three equi-
libria with different parameter value. However, we can not discuss the stability of the
equilibrium respectively, for that there is no actual formulas of the equilibria.
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2.2 Stability of nonnegative equilibria

In this section, we discuss the local stability of nonnegative equilibria. Before developing
our argument, let us set up the following notations.

Notation 1. Let 0 = µ0 < µ1 < µ2 < · · · < µn < · · · → ∞ are the eigenvalues of −∆
on Ω under homogeneous Neumann boundary condition. We define the following space
decomposition:

(i) S(µn) is the space of eigenfunctions corresponding to µn for n = 0, 1, 2, . . . ;
(ii) Xij := {c · φij : c ∈ R2}, where {φij} are orthonormal basis of S(µj) for

j = 1, 2, . . . ,dim[S(µi)];
(iii) X := {u = (u, v) ∈ [C1(Ω̄)]2: ∂u/∂n = ∂v/∂n = 0}, and so X =

⊕∞
i=1 Xi,

where Xi =
⊕dim[S(µi)]

j=1 Xij .

The linearization of (1) at a constant solution E∗ = (u∗, v∗) can be expressed by

ut = (D∆ + J1)u + J2uτ , (5)

where D = diag(d1, d2), u = (u(x, t), v(x, t))T, and uτ = (u(x, t− τ), v(x, t− τ))T,

J1 =

(
r1 − 2r1u

∗

K − aβv∗

(a+u∗)2 − βu∗

a+u∗

−ηv∗ αu∗

a+u∗ − 2r2v
∗ − ηu∗

)
, J2 =

(
0 0

av∗αe−λτ

(a+u∗)2 0

)
.

In view of Notation 1, we can induce the eigenvalues of system (5) confined on the
subspace Xi. If λ is an eigenvalue of (5) on Xi, it must be an eigenvalue of the matrix
−µnD + J∗ for each n > 0, where

J∗ =

(
−r1 + 2r1u

∗

K + aβv∗

(a+u∗)2
βu∗

a+u∗

ηv∗ − av∗αe−λτ

(a+u∗)2 − αu∗

a+u∗ + 2r2v
∗ + ηu∗

)
.

For E0 = (0, 0), the corresponding characteristic equation is

(λ+ d1µn − r1)(λ+ d2µn) = 0.

Clearly, we obtain
λ1 = r1 − d1µn, λ2 = −d2µn.

Hence, E0 is unstable, that is both species will never be lead to extinction simultaneously.
For E1 = (K, 0), the corresponding characteristic equation is

(λ+ d1µn + r1)(λ+ d2µn + ηK − αK

a+K
) = 0.

Obviously,

λ1 = −r1 − d1µn, λ2 = −d2µn +
αK

a+K
− ηK.

Consequently, if α < η(a+K), then E1 = (K, 0) is locally asymptotically stable.

Nonlinear Anal. Model. Control, 24(3):387–406
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For E∗ = (u∗, v∗), the corresponding characteristic equation is

λ2 +B1nλ+B2n +B3e−λτ = 0, (6)

here

B1n = d1µn + a1 + d2µn + a2,

B2n = (d1µn + a1)(d2µn + a2)− ηv∗α2,

B3 = αaα1α2, a1 = −βu∗α1 +
r1u
∗

K
, a2 = r2v

∗ + ηu∗,

α1 =
v∗

(a+ u∗)2
, α2 =

βu∗

a+ u∗
.

2.3 Turing bifurcation

In this subsection, we mainly focus on the effects of diffusive on Turing instability for
model (1) with τ = 0. Let us consider the spatially homogeneous system corresponding
to model (1)

du

dt
= r1u

(
1− u

K

)
− βuv

a+ u
,

dv

dt
=

αuv

a+ u
− r2v

2 − ηuv. (7)

According to the work by Turing, a positive equilibrium E∗ is Turing instability,
meaning that it is an asymptotically positive equilibrium of model (7), but is unstable
with respect to the solutions of spatial model (1). Given this, denote

k1 =
d2a1 + d1a2 −

√
(d2a1 + d1a2)2 − 4d1d2(a1a2 − ηv∗α2 + αaα1α2)

2d1d2
,

k2 =
d2a1 + d1a2 +

√
(d2a1 + d1a2)2 − 4d1d2(a1a2 − ηv∗α2 + αaα1α2)

2d1d2
,

we can obtain the following results.

Theorem 1. Assume that the following conditions are true:

a1 + a2 > 0, a1a2 − ηv∗α2 + αaα1α2 > 0. (8)

then model (1) is Turing instability if 0 < k1 < µi < k2 for some µi.

Proof. According to the above discussions, the characteristic equation of model (7) at
positive equilibrium is as follows:

λ2 + (a1 + a2)λ+ a1a2 − ηv∗α2 + αaα1α2 = 0.

Obviously, as conditions (8) hold, the positive equilibrium of model (7) is locally asymp-
totically stable.
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For spatial model (1), we have

B2n +B3 = d1d2µ
2
n + (d2a1 + d1a2)µn + a1a2 − ηv∗α2 + αaα1α2.

If there exists a µi such that 0 < k1 < µi < k2, then B2i + B3 < 0, which means that
Eq. (6) has a positive real part eigenvalue, then the positive equilibrium is unstable when
diffusion is present. Thus, Turing instability occurs.

2.4 Hopf bifurcation

In the following part, we analyze the stability and Hopf bifurcation about the positive
equilibrium E∗(u∗, v∗). We make the following assumptions:

(H1) r1/K − βα1 > 0;
(H2) αaα1 − ηv∗ > 0;
(H3) a1a2 − αaα1α2 − α2ηv

∗ > 0;
(H4) a1a2 − αaα1α2 − α2ηv

∗ < 0.

Lemma 2. If (H1) and (H2) hold, then the positive equilibrium E∗ = (u∗, v∗) is locally
asymptotically stable with τ = 0.

Proof. As τ = 0, Eq. (6) is equivalent to the following equation:

λ2 +B1nλ+B2n +B3 = 0.

Obviously, if (H1) and (H2) hold, then

B1n = d1µn − βu∗α1 +
r1u
∗

K
+ d2µn + r2v

∗ + ηu∗ > 0,

B2n +B3 =

(
d1µn − βu∗α1 +

r1u
∗

K

)
(d2µn + r2v

∗ + ηu∗)

+ αaα1α2 − α2ηv
∗ > 0.

According to the Routh–Hurwitz conditions, E∗ is locally asymptotically stable with
τ = 0.

Now we discuss the effect of the delay τ on the stability of the positive equilibrium
of system (1). Assume that iω is a root of Eq. (6). Then ω should satisfy the following
equation for some n > 0:

−ω2 + iB1nω +B2n +B3

(
cos(ωτ)− i sin(ωτ)

)
= 0,

which implies that

ω2 −B2n = B3 cos(ωτ), B1nω = B3 sin(ωτ). (9)

From (9), adding the squared terms for both equations yields

ω4 +
(
B2

1n − 2B2n

)
ω2 +B2

2n −B2
3 = 0. (10)

Nonlinear Anal. Model. Control, 24(3):387–406
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Let z = ω2, Eq. (10) becomes

z2 +
(
B2

1n − 2B2n

)
z +B2

2n −B2
3 = 0, (11)

where

B2
1n − 2B2n =

(
d1µn +

r1u
∗

K
− βu∗α1

)2

+ (d2µn + r2v
∗ + ηu∗)2,

B2
2n −B2

3

= (B2n +B3)(B2n −B3)

=

((
d1µn − βu∗α1 +

r1u
∗

K

)
(d2µn + r2v

∗ + ηu∗) + αaα1α2 − α2ηv
∗
)

×
((

d1µn − βu∗α1 +
r1u
∗

K

)
(d2µn + r2v

∗ + ηu∗)− αaα1α2 − α2ηv
∗
)
.

(12)

Theorem 2. If (H1), (H2) and (H3) hold, then all roots of Eq. (6) have negative real
parts for all τ > 0, i.e., the positive equilibrium E∗ of system (1) is asymptotically stable
for all τ > 0.

Proof. From Eq. (12) we know that

B2
1n − 2B2n > 0.

From Lemma 2 we get B2n +B3 > 0. Obviously, if (H1) and (H3) hold, then

B2n −B3 =

(
d1µn − βu∗α1 +

r1u
∗

K

)
(d2µn + r2v

∗ + ηu∗)

− αaα1α2 − α2ηv
∗

> 0

for any n > 0.
These imply that Eq. (10) has no positive roots, and hence, the characteristic Eq. (6)

has no purely imaginary roots. Combined with Lemma 2, last observation implies that all
roots of Eq. (6) have negative real parts as τ > 0.

Remark 2. In Section 3, we will prove that if system (1) has only a unique positive
equilibrium, then this positive equilibrium is indeed globally asymptotically stable for
any τ > 0.

Denote

µ∗ =
a11d2 + a22d1 +

√
(a11d2 + a22d1)2 − 4d1d2(a11a22 − α2ηv∗ −B3)

2d1d2
,

where

a11 = −
(
βu∗α1 −

r1u
∗

K

)
, a12 = −(r2v

∗ + ηu∗).

Thus, there must exist some N∗ ∈ N0 such that µ∗ = µN∗ or µN∗ < µ∗ < µN∗+1.
Hence, we have following lemma.
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Lemma 3. If (H1), (H2) and (H4) hold, then Eq. (6) has a pair of purely imaginary roots
±iωn(0 6 n 6 N∗) at

τ = τ jn = τ0
n +

2jπ

ωn
, j ∈ N0 := {0, 1, 2, 3, . . . }

where

τ0
n =

1

ωn
arccos

ω2
n −B2n

B3
,

ωn =

√
2B2n −B2

1n +
√

(B2
1n − 2B2n)2 − 4(B2

2n −B2
3)

2
.

Proof. From hypothesis (H3), we know that Bn + C > 0.

B2n −B3 = d1d2µ
2
n − ((βu∗α1 −

r1u
∗

K
)d2 + (r2v

∗ + ηu∗)d1)µn + (βu∗α1

−r1u
∗

K
)(r2v

∗ + ηu∗)− α2ηv
∗ −B3.

Hence, Eq. (11) has no positive roots for n > N∗, and 0 6 n 6 N∗ is the necessary
condition of Eq. (11) having positive roots. For 0 6 n 6 N∗, a unique positive root zn
of Eq. (11) is

zn =
2B2n −B2

1n +
√

(B2
1n − 2B2n)2 − 4(B2

2n −B2
3)

2
,

and

ωn =

√
2B2n −B2

1n +
√

(B2
1n − 2B2n)2 − 4(B2

2n −B2
3)

2

is the imaginary part of the purely imaginary root, at

τ = τ jn = τ0
n +

2jπ

ωn
=

1

ωn
arccos

ω2
n −B2n

B3
+

2jπ

ωn
, j ∈ N0. (13)

Equation (6) has a pair of purely imaginary roots ±iωn(0 6 n 6 N∗).
It is clear from Eq. (13) that τ j+1

n > τ jn. The following lemma shows that

τ jN∗ > τ jN∗−1 > · · · > τ j1 > τ j0 ,

and hence, we have a complete ordering of the bifurcation values τ jn.

Lemma 4. If (H1), (H2) and (H4) hold, then

τ jN∗ > τ jN∗−1 > · · · > τ j1 > τ j0

for j ∈ N0.

Nonlinear Anal. Model. Control, 24(3):387–406
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Proof. From the above analysis we know

ω2
n =

2B2n −B2
1n +

√
(B2

1n − 2B2n)2 − 4(B2
2n −B2

3)

2

=
2√

(B2
1n−2B2n)2

(B2
3−B2

2n)2
+ 4

B2
3−B2

2n
+

B2
1n−2B2n

B2
3−B2

2n

.

Obviously, B2
3 − B2

2n is decreasing in n, and B2
1n − 2B2n is increasing in n. We obtain

that
ωN∗ 6 ωN∗−1 6 · · · 6 ω1 < ω0.

Notice thatBn is strictly increasing in n for 0 6 n 6 N∗. Then we obtain ω2
n −Bn/C

is strictly decreasing in n for 0 6 N 6 N∗. Thus τ jn = (1/ωn) arccos((ω2
n −Bn)/C) +

2jπ/ωn is strictly increasing in n. Namely,

τ jN∗ > τ jN∗−1 > · · · > τ j1 > τ j0 , j ∈ N0.

From Lemma 4 we know that τ0
0 = min{τ jn: 0 6 n 6 N∗, j ∈ N0}.

Lemma 5. Let λn(τ) = αn(τ) ± iωn(τ) be the root of (6) near τ = τ jn satisfying
αn(τ jn) = 0 for ωn(τ jn) = ωn. Then the following transversality condition holds:

(α′n(τ))−1 > 0

for j = 0, 1, 2 . . . and 0 6 n 6 N∗.

Proof. Differentiating the two sides of Eq. (6) with respect to τ yields

dλ

dτ

(
2λ+B1n −B3τe−λτ

)
= B3λe−λτ .

Hence, (
dλ

dτ

)−1

=
2λ+B1n −B3τe−λτ

B3λe−λτ
=

2

B3
eλτ +

B1n

B3λ
eλτ − τ

λ
.

Substituting τ jn into the above equation, we obtain

(α′n(τ))−1 = Re

(
dλ

dτ

)−1

τ=τjn

=
2 cos(ωnτ

j
n)

B3
+
B1n sin(ωnτ

j
n)

B3ωn
.

Since B3 cos(ωnτ
j
n) = ω2

n −B2n and B3 sin(ωnτ
j
n) = B1nωn. Then we have

(
α′n(τ)

)−1
= Re

(
dλ

dτ

)−1

τ=τjn

=

√
(B2

1n − 2B2n)2 − 4(B2
2n −B2

3)

B2
3

> 0.
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From the above analysis, we have the following conclusion.

Theorem 3. If (H1), (H2) and (H4) hold, then the following statements are true:

(i) The positive steady state is asymptotically stable when τ ∈ [0, τ0), and unstable
when τ > τ0;

(ii) Hopf bifurcation occurs at τ = τ0
0 . That is, system (1) has a branch of periodic

solutions bifurcating from the positive steady state near τ = τ0
0 .

Remark 3. According to the above discussions, we can conclude that with different con-
ditions, the system may appear different dynamic behaviours. Under certain conditions,
the system may be stable or unstable (Hopf bifurcation occurs) with different delay τ ,
which means that the delay τ has great effect on the dynamics of the system, and it may
affect the survival of the populations.

3 Global stability

In this section, we prove that when (H1)–(H3) hold, the positive equilibrium is indeed
globally asymptotically stable. To achieve this, we utilize upper-lower solution method
in [16, 17].

Lemma 6. (See [31].) Assume that u(x, t) is defined by

∂u

∂t
= d1∆u+ ru

(
1− u

K

)
, x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω,

then limt→+∞ u(x, t) = K.

Theorem 4. Assume that (H1)–(H3) hold, then for any initial value (u0(x, t), v0(x, t)) >
(0, 0), the corresponding nonnegative solution (u(x, t), v(x, t)) of system (1) uniformly
converges to E∗ = (u∗, v∗) as t → +∞. That is, the unique positive equilibrium
E∗(u∗, v∗) is globally asymptotically stable.

Proof. From the first equation of system (1), we have

∂u

∂t
= d1∆u+ r1

(
1− u

K

)
− βuv

a+ u
6 d1∆u+ r1

(
1− u

K

)
,

then from the comparison principle of parabolic equations and Lemma 6, for an arbitrary
ε > 0, there exists t1 (> 0) such that for any t > t1,

u(x, t) 6 c̄1, (14)
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where c̄1 = K + ε. This implies

lim sup
t→+∞

max
x∈Ω̄

u(., t) 6 K.

Therefore, from the second equation of system (1) and Eq. (14) we have

∂v

∂t
= d2∆v +

αu(t− τ)v

a+ u(t− τ)
− r2v

2 − ηuv

6 d2∆v + αv

(
1− a

a+ u
− r2v

α2

)
for t > t1 + τ . Hence, there exists t2 > t1 such that for any t > t2,

v(x, t) 6 c̄2, (15)

where c̄2 = c̄1α/(r2(a+ c̄1)) + ε. Again, this implies

lim sup
t→+∞

max
x∈Ω̄

v(., t) 6
αK

r2(a+K)
.

On the other hand, from the first equation of system (1) and (15) we have

∂u

∂t
= d1∆u+ u

(
r1 +

r1u

K
− βv

α+ u

)
> d1∆u+ u

(
r1 −

r1u

K
− βc̄2

α

)
for t > t2. Since (H1)–(H3) hold, then for small enough ε2 > 0,

K − βc̄2
αr1
− ε2 > 0.

Hence, there exists t4 > t3 such that for any t > t4,

u(x, t) > c1, (16)

where

c1 = K − βc̄2
αr1
− ε2.

Then we apply the lower bound of u to the second equation of system (1), and we
have

∂v

∂t
= d2∆v +

αu(t− τ)v

a+ u(t− τ)
− r2v

2 − ηuv,

> d2∆v + αv

(
1− a

a+ u
− r2v

α
− ηu

α

)
,

> d2∆v + αv

(
1− a

a+ c1
− r2v

α
− ηc̄1

α

)
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for t > t4. Then there exists t5 > t4 such that for any t > t5,

v(x, t) > c2, (17)
where

c2 =
1

r2

(
c1α

a+ c1
− ηc̄1

)
− ε.

From (16) and (17) we can easily obtain that

lim inf
t→+∞

max
x∈Ω̄

u(., t) > c1, lim inf
t→+∞

max
x∈Ω̄

v(., t) > c2.

It is easily obtained that

c1 6 u(x, t) 6 c̄1, c2 6 v(x, t) 6 c̄2,

and c1, c̄1, c2, c̄2 satisfy

r1c̄1(1− c̄1
K

)− βc̄1c2
a+ c̄1

6 0 6 r1c1

(
1− c1

K

)
− βc1c̄2
a+ c1

,

αc1c̄2
a+ c1

− r2c̄
2
2 − ηc1c̄2 6 0 6

αc̄1c2
a+ c̄1

− r2c
2
2 − ηc̄1c2.

(18)

Inequalities (18) show that (c̄1, c̄2) and (c1, c2) are a pair of coupled upper and lower
solutions of system (1) as in the definition in [14, 15].

In addition, we have the following inequality:∣∣∣∣r1u1

(
1− u1

K

)
− βv1

a+ u1
−
(
r1u2

(
1− u2

K

)
− βv2

a+ u2

)∣∣∣∣
6

∣∣∣∣(r − r

K
(u1 + u2)(u1 − u2)−

(
βv1

a+ u1
− βv2

a+ u2

)∣∣∣∣
6

∣∣∣∣(r − 2r

K
c1

)
(u1 − u2)− βv1

a+ c1
(v1 − v2)

∣∣∣∣
6

∣∣∣∣(r − 2r

K
c1

)∣∣∣∣∣∣(u1 − u2)
∣∣+

∣∣∣∣ βv1

a+ c1

∣∣∣∣∣∣(v1 − v2)
∣∣.

Then there exists a positive constant M such that∣∣∣∣r1u1

(
1− u1

K

)
− βv1

a+ u1
−
(
r1u2

(
1− u2

K

)
− βv2

a+ u2

)∣∣∣∣
6M

(
|u1 − u2|+ |v1 − v2|

)
.

Similarly, we have∣∣∣∣v1

(
αu1

a+ u1
− r2v1 − ηu1

)
− v2

(
αu2

a+ u2
− r2v2 − ηu2

)∣∣∣∣
6M

(
|u1 − u2|+ |v1 − v2|

)
.
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We now construct two sequences (c̄(n)
1 , c̄

(n)
2 ) and (c(n)

1 , c
(n)
2 ) from the following itera-

tion process:

c̄
(n)
1 = c̄

(n−1)
1 +

1

M

(
r1c̄

(n−1)
1

(
1− c̄

(n−1)
1

K

)
− βc̄

(n−1)
1 c

(n−1)
2

a+ c̄
(n−1)
1

)
,

c̄
(n)
2 = c̄

(n−1)
2 +

1

M

(
αc

(n−1)
1 c̄

(n−1)
2

a+ c
(n−1)
1

− r2

(
c̄
(n−1)
2

)2 − ηc̄(n−1)
2 c

(n−1)
1

)
,

c
(n)
1 = c

(n−1)
1 +

1

M

(
r1c

(n−1)
1

(
1− c

(n−1)
1

K

)
− βc

(n−1)
1 c̄

(n−1)
2

a+ c
(n−1)
1

)
,

c
(n)
2 = c

(n−1)
2 +

1

M

(
αc̄

(n−1)
1 c

(n−1)
2

a+ c̄
(n−1)
1

− γ
(
c
(n−1)
2

)2 − ηc̄(n−1)
1 c

(n−1)
2

)
(19)

with initial data (c̄01, c̄
0
2) = (c̄1, c̄2)) and (c01, c

0
2) = (c1, c2). It is readily seen that se-

quences (c̄
(n)
1 , c̄

(n)
2 ) and (c

(n)
1 , c

(n)
2 ) possess the following property:

(c1, c2) 6
(
c
(n)
1 , c

(n)
2

)
6
(
c
(n+1)
1 , c

(n+1)
2

)
6
(
c̄
(n+1)
1 , c̄

(n+1)
2

)
6
(
c̄
(n)
1 , c̄

(n)
2

)
6 (c̄1, c̄2), n = 1, 2, . . . .

Then there exists (c̃1, c̃2)) and (c̆1, c̆2) such that

(c1, c2) 6 (c̆1, c̆2) 6 (c̃1, c̃2) 6 (c̄1, c̄2), n = 1, 2, . . . .

Therefore,
lim

n→+∞
c̄
(n)
1 = c̃1, lim

n→+∞
c̄
(n)
2 = c̃2,

lim
n→+∞

c
(n)
1 = c̆1, lim

n→+∞
c
(n)
2 = c̆2.

(20)

Hence, from (19) and (20) we have(
1− c̃1

K

)
− βc̆2
a+ c̃1

= 0,

(
1− c̆1

K

)
− βc̃2
a+ c̆1

= 0,

βc̆1
a+ c̆1

− r2c̃2 − ηc̆1 = 0,
βc̃1
a+ c̃1

− r2c̆2 − ηc̃1 = 0.

(21)

From (21) we can easily obtain that c̃1 = c̆1 and c̃2 = c̆2. Then from the results in [14,15]
the solution (u(x, t), v(x, t)) of system (1) satisfies

lim
t→+∞

u(x, t) = u∗, lim
t→+∞

v(x, t) = v∗

uniformly for x ∈ Ω̄. So the positive equilibrium (u∗, v∗) is globally asymptotically
stable for system (1).
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4 Numerical simulation

In this section, we present numerical simulations of some examples to illustrate our theo-
retical results.

4.1 Global stability of the positive equilibrium for all τ >>> 0

Consider system (1) with the parameters d1 = 0.2, d2 = 0.3, r1 = 0.1, a = 0.8, β = 0.1,
α = 0.32, r2 = 0.15, K = 15 and η = 0.01. Calculation reveals that system (1) has
a positive equilibrium E∗ = (13.8852, 1.0914). According to Theorem 4, system (1) has
global asymptotically stability at the unique positive equilibrium E∗ for all τ > 0 as
shown in Fig. 2. This means that the prey and predator coexist at the steady state with the
parameters above for all τ > 0.

4.2 Stability and Hopf bifurcation of system (1)

Consider system (1) with the following parameters: r1 = 0.1, a = 0.8, β = 0.4,
α = 0.32, r2 = 0.15, K = 15 and η = 0.01. Choosing Ω = (0, π) and the diffusion
coefficients d1 = 0.2, d2 = 0.3, by a direct calculation, we obtain that system (1) has
a positive E∗ = (0.0962, 0.2226) and the critical value is τ0 = 7.8613. Obviously, the
parameters satisfy the conditions of Theorem 3. According to Theorem 3, system (1) is
locally asymptotically stable at E∗ for τ = 7 ∈ [0, τ0) and unstable for τ = 8 > τ0
as shown in Fig. 3. Figure 3(b) shows that the spatially homogeneous periodic solutions
emerge from the positive equilibrium E∗, which implies that the prey and the predator
coexist In the form of periodic oscillations.

If we let r1 = 0.15 and other parameters be same as above, then system (1) has three
equilibria: E∗1 = (0.1679, 0.3589),E∗2 = (5.4953, 1.4959) andE∗3 = (10.4034, 1.2874).
Simple calculation reveals that E∗1 is locally asymptotically stable for all τ > 0, E∗2 is
unstable and E∗3 is locally asymptotically stable for τ ∈ [0, 4.4484) and unstable for
τ > 4.4484 as shown in Figs. 4 and 5. However, as τ increases further,with the same
initial values, the limit cycle disappears, and the solution converges to E∗3 as shown in

Figure 2. System (1) is globally asymptotically stable for all τ > 0.

Nonlinear Anal. Model. Control, 24(3):387–406



402 J. Liu, X. Zhang

(a) (b)

Figure 3. (a) As τ = 7, the positive equilibrium E∗ is stable; (b) the periodic solutions emerge form the
positive equilibrium E∗ with τ = 8.

Figure 4. E∗
1 and E∗

3 are locally asymp-
totically stable with τ = 2.

Figure 5. Hopf bifurcation occurs at E∗
1

with τ = 5 and E∗
3 is yet stable.

(a) (b)

Figure 6. System (1) is stable at E∗
3 with τ = 10.

Fig. 6. It is shown that the delay τ can affect the stability of the system and with different τ
the population can exist at different amounts.
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Figure 7. The positive equilibrium E∗ of the ordinary differential equation is stable with τ = 0.

Figure 8. Turing bifurcation of system (1).

4.3 Turing bifurcation

We choose parameters as d1 = 0.02, d2 = 6, r1 = 0.05, a = 0.6, β = 0.4, α = 0.2,
r2 = 0.3, K = 10, η = 0.01 and τ = 0. By calculation, we obtain that system (1) has
a positive equilibrium E∗ = (0.0922, 0.0857). By theoretical analysis, the corresponding
ordinary differential equation is stable at the positive equilibrium E∗ as shown in Fig. 7.
However, the positive equilibrium E∗ of system (1) is unstable. Thus, Turing instability
occurs, as shown in Figure 8. It shows that the prey and predator are unevenly distributed
in time and space, which is caused by the Turing instability.

4.4 The effect of anti-predator behaviour

In order to investigate the effect of anti-predator behaviour, we choose parameter as d1 =
0.1, d2 = 0.2, r1 = 0.1, a = 0.8, β = 0.8, α = 0.32, r2 = 0.15, K = 15 and η varies in
[0, 0.02]. The positive equilibrium varies with increasing η are shown in Fig. 9. It is shown
that system (1) has only a positive equilibrium. As η increases and passes through a critical
value, system (1) undergoes a static bifurcation giving rise to two positive equilibria.
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Figure 9. The positive equilibrium of system (1) varies with η increasing.

Figure 10. The stable and unstable domains vary with η increasing: I is stable domains, II is unstable domain.

Figure 10 shows that with increasing η the stability range is decreasing. It means that
the rate of anti-predator behaviour of prey to the predator population has an effect on
stabilizing positive equilibrium of system (1).

5 Conclusions

In this paper, by considering delay and diffusion, a delayed diffusive predator–prey model
system with anti-predator behaviour is established to investigate the effects of gestation
delay and the rate of anti-predator behaviour on the dynamic behavior of the system. The
theoretical analysis and numerical simulation reveal that the discrete delays are respon-
sible for the stability switch of the system, and a Hopf bifurcation occurs as the delays
increase through a certain threshold.

The diffusion can induce Turing bifurcation, and the corresponding facts are obtained
from Sections 2.3 and 4.3. All these means that the diffusion has important influence on
survival of the species.

In addition, numerical simulations obtained in this paper suggest that the rate of anti-
predator behaviour cannot only cause the static bifurcation occurs, but also change the
stability of the system (see Section 4.4), which will contribute to the persistence and
sustainable development of the system.
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19. Y. Saitō, Prey kills predator: Counter-attack success of a spider mite against its specific
phytoseiid predator, Exp. Appl. Acarol., 2(1):47–62, 1986.

20. M. Sambath, S. Gnanavel, K. Balachandran, Stability and Hopf bifurcation of a diffusive
predator–prey model with predator saturation and competition, Appl. Anal., 92(12):2451–2468,
2013.

21. Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator–
prey system, J. Math. Anal. Appl., 301(1):1–21, 2005.

22. B. Tang, Y. Xiao, Bifurcation analysis of a predator–prey model with anti-predator behaviour,
Chaos Solitons Fractals, 70:58–68, 2015.

23. C. Tian, L. Zhang, Hopf bifurcation analysis in a diffusive food-chain model with time delay,
Comput. Math. Appl., 66(10):2139–2153, 2013.

24. R. Tollrian, Predator-induced morphological defenses: Costs, life history shifts, and maternal
effects in Daphnia pulex, Ecology, 76(6):1691–1705, 1995.

25. V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature,
118(1):558–560, 1926.

26. W. Wang, Y. Lin, L. Zhang, F. Rao, Y. Tan, Complex patterns in a predator–prey model with
self and cross-diffusion, Commun. Nonlinear Sci. Numer. Simul., 16(4):2006–2015, 2011.

27. W. Wang, Q. Liu, Z. Jin, Spatiotemporal complexity of a ratio-dependent predator–prey system,
Phys. Rev. E, 75(5):051913, 2007.

28. Jianhong Wu, Theory and Applications of Partial Functional Differential Equations, Applied
Mathematical Sciences, Springer, New York, September 1996.

29. R. Xu, Z. Ma, Global stability of a reaction-diffusion predator–prey model with a nonlocal
delay, Math. Comput. Modelling, 50(1–2):194–206, 2009.

30. X. Yan, Y. Chu, Stability and bifurcation analysis for a delayed Lotka–Volterra predator–prey
system, J. Comput. Appl. Math., 196(1):198–210, 2006.

31. Q. Ye, Z. Li, Introduction of Reaction–Diffusion Equations, Regional Conferences Series in
Applied Mathematics, Science Publ. House, Beijing, 1990.

32. J. Zhang, Z. Jin, J. Yan, G. Sun, Stability and Hopf bifurcation in a delayed competition system,
Nonlinear Anal., Theory, Methods Appl., 70:658–670, 2009.

33. X. Zhang, H. Zhao, Bifurcation and optimal harvesting of a diffusive predator–prey system
with delays and interval biological parameters, J. Theor. Biol., 363:390–403, 2014.

34. X. Zhang, H. Zhao, Stability and bifurcation of a reaction-diffusion predator–prey model
with non-local delay and Michaelis–Menten-type prey-harvesting, Int. J. Comput. Math.,
93(9):1447–1469, 2016.

35. W. Zuo, J. Wei, Stability and hopf bifurcation in a diffusive predator–prey system with delay
effect, Nonlinear Anal., Real World Appl., 12(4):1998–2011, 2011.

36. W. Zuo, J. Wei, Stability and bifurcation in a ratio-dependent Holling-III system with diffusion
and delay, Nonlinear Anal. Model. Control, 19(1):132–153, 2014.

https://www.mii.vu.lt/NA


	Introduction
	Local stability and bifurcation of system (1)
	Existence of equilibrium points
	Stability of nonnegative equilibria
	Turing bifurcation
	Hopf bifurcation

	Global stability
	Numerical simulation
	Global stability of the positive equilibrium for all τ >= 0
	Stability and Hopf bifurcation of system (1)
	Turing bifurcation
	The effect of anti-predator behaviour

	Conclusions
	References

