Abstract
In this paper we study the long time behavior of solutions for an optimal control problem associated with the viscous incompressible electrically conducting fluid modeled by the magnetohydrodynamic (MHD) equations in a bounded two dimensional domain through the adjustment of distributed controls. We first construct a quasi-optimal solution for the MHD systems which possesses exponential decay in time. We then derive some preliminary estimates for the long-time behavior of all admissible solutions of the MHD systems. Next we prove the existence of a solution for the optimal control problem for both finite and infinite time intervals. Finally, we establish the long-time decay properties of the solutions for the optimal control problem.
Downloads
Download data is not yet available.