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Abstract. In this paper, a mathematical model is proposed and analgsstiidy the
dynamics of a prey-predator model. It is assumed that th@atdb divided into two
zones, namely free zone and reserved zone. Predators aa#auegd to enter into the
reserved zone. Criteria for the coexistence of predatey-pre obtained. The role of
reserved zone is investigated and it is shown that the regenve has a stabilizing effect
on predator-prey interactions.
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1 Introduction

The biosphere is an important zone for biological actigitieat are mainly responsible
for the changes in ecology and environment. The co-existaidnteracting biolo-
gical species has been of great interest in the past few decatd has been studied
extensively using mathematical models by several reseesdth—10]. Many biological
species have been driven to extinction and many others afeaterge of extinction
due to several external forces such as overexploitatioar prxedation, environmental
pollution, mismanagement of the habitat, etc. In order tagut these species, appropriate
measures such as restriction on harvesting, creatingmsbseones/refuges, etc. should be
adopted that will decrease the interaction of these sp&dtbsexternal forces. The role
of reserve zones/refuges in predator-prey dynamics ha&sveztconsiderable attention
and has also been investigated by several researcherdl[11r-particular, Collings [11]
studied the nonlinear behavior of predator-prey model wéflage protecting a constant
proportion of prey and wit temperature dependent parasetevsen appropriately for a
mite interaction on fruit species. He showed the existerice temperature interval in
which increasing the amount of refuge dynamically desitadslthe system; and on part
of this interval the interaction is less likely to persistirat predator and prey minimum
population densities are lower than when no refuge is availaKrivan [12] proposed a
mathematical model and investigated the effects of optantipredator behavior of prey
in predator-prey system. He showed that optimal antipoedathavior of prey leads to
persistence and reduction of oscillations in populatiarsitees. Chattopadhyay et al. [13]
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studied a prey-predator model with some cover on prey spethey observed that global
stability of the system around positive equilibrium doesmecessarily imply the perma-
nence of the system. Recently, Kar [18] proposed a prega&yr-model incorporating
a prey refuge and independent harvesting on either spetieshowed that using the
harvesting efforts as control, it is possible to break theicypehavior of the system.

In the above investigations, the dynamics of predator d¢jvim unreserved zone
together with prey has not been studied explicitly. The meseone plays a vital role
in aquatic environment for the protection of fishery researfrom its overexploitation
[22-26]. In particular, Dubey et al. [22] proposed and aretiya mathematical model to
study the dynamics of a fishery resource system in an aquatimement consisting of
two zones, namely a free fishing zone and a reserve zone whleirefis strictly prohibi-
ted. It was suggested that even if fishery is exploited cootiisly in the unreserved zone,
fish populations can be maintained at an appropriate equiliblevel in the habitat. The
model presented in this paper will be of great use in a NatiBagk where prey-predator
are living together. The prey species which are to be coeslecan be protected from
predators by creating an artificial boundary or shelterwithdivide the habitat into two
zones — one reserved and other unreserved. The entry oftpreddo reserved zone can
be restricted by the artificial boundary that may be in thenfof fencing of suitable mesh
size through which prey can pass but predators can not. Tlielstudied in Section 4
(when predator is partially dependent on the prey) can atsaesed in fishery resources
where fisherman can be thought of as predator (in fact, gstggeedator) and fishing is
not permitted in a particular zone, called the reserved zone

Keeping this in view, we consider a habitat consisting of #enes: an unreserved
zone where prey and predator can move freely and a reservedwizere prey can live
but predators are not allowed to enter inside. We considetwlo cases: one when
the predator is wholly dependent on the prey and other whermptldator is partially
dependent on the prey in the unreserved zone. In fact, wedmrthe model developed
in [22] by incorporating an additional equation for predatothe unreserved zone. Then
we study the coexistence and stability behavior of predattey system in the habitat.

2 Mathematical mode

Consider a habitat where prey and predator species arg liwgether. It is assumed that
the habitat is divided into two zones, namely, reserved anelaerved zones. Itis assumed
that predator species are not allowed to enter inside therwed zone whereas the free
mixing of prey species from reserved to unreserved zone Eedwersa is permissible.

Let z(t) be the density of prey species in unreserved zg(¥g,the density of prey
species in reserved zone an@) the density of the predator species at any time 0.
Let o7 be the migration rate coefficient of the prey species fronesarved to reserved
zone andr, the migration rate coefficient of prey species from resemeednreserved
zone. Itis assumed that the prey species in both zones asingrmgistically.

Keeping these in view and following Dubey et al. [22], the dgrics of system may
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be governed by the following system of ordinary differelgiguations:

d—x*ra: 1- 2 - x+ — bixz

i I7a 01T + o2y — P12,

dy Yy

zﬁw@z>+ﬁfOWv (1)

= =QE) - o,
w0) 20, y(0)20, =(0) 0.

In model (1),r ands are intrinsic growth rate coefficients of prey species ineserved
and reserved zones respectively;and L are their respective carrying capacities. is
the depletion rate coefficient of the prey species due to tbéagtor, ands, is the natural
death rate coefficient of the predator species.

In model (1), the functior)(z) represents the growth rate of predator. The model
(1) is analyzed in two different cases, hamely,

() Q(z) = Baz, 2
i.e. when predator is wholly dependent on the prey species;

.. z

) Q) =0 (1~ 5= ) + s @)

i.e. when the predator is partially dependent on the prethilncase, the prey species of
densityz(t) can be thought of as an alternative resource for the predator

By denotinga = b — By > 0, M = My(b — 5o)/b we note that the third equation
of model (1) can be written as

fl—i =az <1 — %) + Gaxz. (4)

In model system (1)—(4);, s, 01,02, 01, B2, 8o anda are assumed to be positive con-
stants.

Now we present the analysis of model (1) in two cases (2) andy(8sing stability
theory of ordinary differential equations [27].

3 Casel: when predator iswholly dependent on the prey
In this case()(z) satisfies equation (2).

3.1 Existenceof equilibria

It can be checked that model (1), whéXz) satisfies (2), has only three nonnegative
equilibria, namelyEy(0,0,0), E1(Z,¥,0) and E(z,7,%). The equilibriumE, exists
obviously and we shall show the existencesyfand £ as follows:
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3.11 Existenceof E4(Z,9,0)

HereZ andy are the positive solutions of the following algebraic equra:

x

rac<1 - ?) — o1+ o2y =0, (5a)
Y _

sy (1 — Z) + o012 — o2y = 0. (5b)

From equation (5a), we have

v =[5 - —oud]. ©

Substituting the value af from equation (6) into equation (5b), a little algebraic ripan
lation yields

az® + bz +cx+d =0, (7)
where

sr? —2rs(r — o1)

a = ——F5—x = - 7
Lo3K?’ KLo?

_ 2 _ _ _
. s(r gl) B (s 02)7“7 de (r—o1)(s —o2) .

Los o2 K 02

It may be noted that equation (7) has a unique positive soluti = z* if the
following inequalities hold:

s(r—o1)?  (s—o2)r
Lo < 7 (8a)
(7“70'1)(870'2) < 0109. (8b)

From the model system (1) we note that if there is no migratifoimne prey species
from reserved to unreserved zone (ieg.= 0) andr — o1 < 0, then‘jl—iC < 0. Similarly
if there is no migration from of the prey species from unreedrto reserved zone (i.e.
o1, = 0)ands — o2 < 0, then%lti < 0. Hence it is natural to assume that

r>o; and s> os. (8c)

Knowing the value oft, the value ofy can be computed from equation (6). It may also
be noted that fofj to be positive, we must have

> %(r—al). (9)
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3.1.2 Existenceof E(7,7, %)

HereZ, vy, Z are the positive solutions of the following algebraic edprad:
-2 + Birxz =0
rT I o1 T 02Y 1 =Y

sy(l 2) + o012 — o2y =0,

L
Boxz — Boz = 0.
Solving the above equations, we get,
T = %, (10a)
1
7= 5o (5= 02) + Vs~ 02)" + 4501 L, (10b)
_ B { _ Bo T3 }
— + _ == . 10c
T o |7 (r 01)52 Kf3 (10¢)
ForZ to be positive, we must have
N N
ooy + (r 0'1)62 > KE (11)

Equation (11) gives a threshold value of the carrying capadithe free access zone for
the survival of predators.

In the following lemma, we show that all solutions of modél&te nonnegative and
bounded.

Lemmal. Theset

Q{(xvywz)G%;_: 0<wx+y+2§%}

isaregion of theattraction for all solutionsinitiating in theinterior of the positive orthant,
where n) is a constant such that

K 5 L 9
= — - > fo.
0<n<pPo, p 4T(T+77) + 48(5+77) » P =P
Proof. Letw(t) = x(t) + y(t) + 2(¢) andn > 0 be a constant. Then

dw ra? s>

EJFHW:(TJFTI)T/*?JF(SJN?)Z/*T*(ﬁl*ﬂz)m*(ﬁofﬂ)z- (12)

Sincep; is the depletion rate coefficient of prey due to its intakehwmy predator ang,
is the growth rate coefficient of predator due to its intdoarctvith their prey, and hence
it is natural to assume thag > (.
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Now choose; such that) < n < Gp.
Then equation (12) can be written as

M_*_ <(+)_@+(+)__
dt nw = \r n)x K S ny

K L
<= 24 = 2 .
—(r )"+ (s +n)” = ulsay)
By using the differential inequality [28], we obtain

0 < w(w(t),y(t),2(t)) < %(1 — e ) 4 (2(0),y(0), 2(0))e ™.

Taking limit whent — oo, we havef) < w(t) < £, proving the lemma. O

3.2 Stability analysis

By computing the variational matrices corresponding tcheaguilibrium, we note the
following:

1. Ey is a saddle point with stable manifold locally in thelirection.

2. If 827 > [y thenE; is a saddle point with stable manifold locally in theg-plane
and with unstable manifold locally in thedirection.

3. If B2x < By thenFE; is locally asymptotically stable.

In the following theorem, we show that the model system (19sdnot have any
closed trajectory in the interior of the positive quadrdihe zy-plane.

Theorem 1. The model system (1) under the assumption (2) can not have any periodic
solution in theinterior of the positive quadrant of the zy-plane.

Proof. Let H(z,y) = ﬁ Clearly H(z,y) is positive in the interior of the positive
quadrant of the:y-plane. Let

T
hi(z,y) = 7"=’U<1 - E) — 01% + 02Y,

hao(z,y) = sy(l - %) + o1z — o2y.

Then
B 0 0 - 1/ r o2y 1/s o1
A(x,y)fam(th)Jray(th)— y<K+ x2) < + 2><0.
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From the above equation, we note thigt:, ) does not change sign and is not identically
zero in the interior of the positive quadrant of thg-plane. By Dulac-Bendixon criteria,
it follows that there is no closed trajectory in the interadrthe positive quadrant of the
xy-plane, and hence the theorem follows. O

In the following theorem, we show thét is locally asymptotically stable.

Theorem 2. Theinterior equilibrium E is locally asymptotically stable.

Proof. In order to prove this theorem, we first linearize model (1)dking the following
transformations:

r=+X, y=y+Y, z=zZ+72.

Now we consider the following positive definite function:

1 1 1
V()= =X?+ 21 Y2 4+ 2y 22
(1) 9 +201 +202 )

wherec; andcs are positive constants to be chosen suitably.
Now differentiatingl” with respect to time along the linear version of model (1),
we get

av rT 02y 9 5@ 01T 9
— =— = X° — Y
dt (K Tz ) “\Tt7%

+ XY (02 + c101) + X Z(co32Z — B1T).

Choosinges = we note thal/ is negative definite if

(02 + c101)* < 401(7; + %) (% + %)

The above equation can further be written as

o sy 01T
(0'2 — 010'1)2 +4cio109 < 401(K + Ly) (fy + %)

It may be noted that if we chooge= 22 then the above condition is automatically satis-
fied. This shows thal” is a Liapunov Function [27], and hence the theorem followsl]

In the following theorem, we are able to show tifatis globally asymptotically
stable.

Theorem 3. Theinterior equilibrium E is globally asymptotically stable with respect to
all solutionsinitiating in the interior of the positive orthant.
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Proof. Consider the following positive definite function abdtit

W(t) = <xffln§) +01<y§§1ng) Jng(ZEElni).
T ] z

DifferentiatingV with respect to time along the solutions of model (1), we get

dw r _ c18 _ _ _
= @7 =y =9+ (@ )z~ D)2 — B1)
[Ty —aY [Ty —7T
+ ooz — x)< v y> +c1o1(y — y)(H)
Choosing:; = £22 andc; = g—;, 4V can further be written as
aw  r _\9 Yoas —\2 02 —\2
dt K(x 7) xalL(y ) Ty (@y —5)”,

which is negative definite. Hend#& is a Liapunov function [27] with respect 6 whose
domain contains the region of attractifn proving the theorem. O

4 Casell: when the predator ispartially dependent on the prey

In this caseR)(z) satisfies equation (3) and the prey can be thought of as amatitee
food for the predator.

4.1 Existence of equilibria

When Q(z) satisfies equation (3), then the third equation of model &) loe replaced
by equation (4). Then it can be checked that model (1) hasrfoanegative equilibria,
namely,Fy(0,0,0), F1(0,0, M), Fa(Z,9,0), F*(x*, y*, 2*).

The equilibriumsF, and F; obviously exist. As in Case |, equilibriudi:(z, 7, 0)
exists if the inequalities (8a) and (8b) are satisfied. Farrtfor z to be positive, we must
have

> %(r—al). (13)

To see the existence df*, we note thatz*,y*, z* are the positive solutions of the
following algebraic equations:

mc(l — %) — o1z + ooy — frxz =0, (14a)

sy (1 — %) 4+ o1x — o9y = 0, (14b)
M

z= ;(a + Bax). (14c)
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Solving the above system of algebraic equations, we get

Az + Bx? 4+ Cx + D =0, (15)
where
s (r  Bi1fM
A= —|—+——
Lag(K+ a )’
25 (v PifeM
- LO‘%(K+ a )(T. 01 BIM))
s—oaf 1T  B1BM
=" (r—o,—BM)?— —
¢ Lag(r o1 = AM) o2 (K+ a )’
D:S_UQ(T—O'l—ﬂlM)—O'l.

02

We note that the equation (15) has a real positive #oetx* if the following conditions
are satisfied:

s(r—o1 — 1 M)? <L02(502)<%+@>7 (16a)
(r—o1—=B1M)(s — 02) < 01072, (16b)
r—o; — 61M > 0. (16C)

Knowing the value ofc*, the value of:* can be computed from equation (14c) and the
value ofy* can be computed from the equation given below:

y*i{<i+w)x*2(ralﬂlM)x* . 17)
o9 K a
Fory* to be positive, we must have
r M
<E+%>I* >(7"70’1761M). (18)

In the following lemma, we show that the model system (1) éddgjically well behaved.
The proof of this lemma is similar to that of Lemma 1, and hemrmétted.

Lemma 2. Theset
O = {(Jc,y,z): w(t) =x(t) +y(t) + 2(t), 0<w(t) < %}
attracts all solutionsinitiating in the interior of the positive orthant, where
* K *\2 L *\2 M *\2
pr= k) (s )T+ o (a )T
and n* is a positive constant.
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4.2 Stability analysis

In order to study the local stability behavior 6%, we compute the variational matrices
corresponding to each equilibrium. From these matrices)ate the following:

1. Fyis an unstable equilibrium point.

2. Fy is a saddle point with stable manifold locally in thalirection and with unstable
manifold locally in thery-plane.

3. Fyisalso a saddle point whose stable manifold is locally indimplane and unstable
manifold locally in thez-direction.

Remark. It may be noted that Theorem 1 will remain valid in the case when predator is
partially dependent on the prey.

In the following theorems, local and global stability betwavof F* have been studied.
The proof of Theorem 4 is similar to that of Theorem 2, and tteopof Theorem 5 is
similar to that of Theorem 3. Hence we omit the proofs of thteserems.

Theorem 4. Theinterior equilibrium £ islocally asymptotically stable.

Theorem 5. Theinterior equilibrium F™* is globally asymptotically stable with respect to
all solutionsinitiating in theinterior of positive orthant.

5 Numerical ssimulation

In this section we present numerical simulation to illugride results obtained in previ-
ous sections. We choose the following values of parametarodel (1):

a=3, r=4, s=35 K=40, L=250, M =30,

19
Bo=3, P1=2, [a=1 o01=25, o02=15. (19)

With the above values of parameters, we note that condi(@nand (9) are satisfied.
This shows that equilibrium exists, and it is given by
T =36.7429, 7y = 53.2598. (20)

When predator is wholly dependent on the prey, it is notedtti@positive equilibrium

E(z,y,7) exists and it is given by
T=3, 7=10.6406, %= 3.2602. (21)

Further, when the predator is partially dependent on thg, jires seen that the positive
equilibrium F* (z*, y*, z*) exists, and it is given by

o* =10.4939, y* =5.5363, z* = 31.0494. (22)

From (20)—(22), we note the following:
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1. When the predator is at zero equilibrium levek 0), the total density of the prey
species at equilibrium level B).0027 (36.7429 + 53.2598).

2. When the predator is completely dependent on the praydbesity of the predator
is 3.2602 while the total density of the prey has decreased 80027 to 13.6406.

3. Comparing (21) and (22), it is noted that when the predatpartially dependent
on the prey, then density of the predator has increased $t2602 to 31.0494, and
prey density has also increased fra86406 to 16.0302.

This suggests that an alternative food for the predatosleadncrease in the density
of the prey as well as predator.
Figs. 1-5 correspond to model (1) when the predator is wiadlyendent on the

— 0,=25 i Tis
- - 0,=45 b — 0,51
7L - - 0,=25
. 0,565 h 2
El . 0,35

L L L L 1 L L L L
o 5 10 15 20 25 0 5 10 15 20 25
t t

Fig. 1. Case I: graph of verses for diffe-  Fig. 2. Case I: graph of verse< for diffe-

rent value ofs; obtained using parameters: rent value ofo2 obtained witho; = 2.5 and

s=3.5,K =40,L =50,060 =3,8: =2, other values of parameters are same as in
ﬁg =1,09 = 1.5. Flg 1.

— 0,725
-~ 0,=35
. 0=45

Fig. 3. Case I: graph of verses for diffe-  Fig. 4. Case I: graph af versest for diffe-
rent value of3; obtained witho; =2.5 and rent value ofo, obtained using the same
other values of parameters are same as in  values of parameters as in Fig. 1.

Fig. 1.
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prey. Fig. 1 shows the behavior efwith time for different values ofr;. This figure
shows that initiallyz increases for some time, then it starts decreasing andyfiaiddlins
its equilibrium level. We also note that initially decreases as; increases but after
certain time this behavior is just reversal and finatlsettles down at its equilibrium
level. Fig. 2 shows the behavior afwith time ¢ for different values ob,. From this
figure, we note that initiallyr increases as- increases, after certain timedecreases
with o5 and finally attains its equilibrium level. From Fig. 3, we aedhat behavior of
x with time ¢ is similar to that of Fig. 1. Fig. 4 shows the behavior of pregdes in
reserved area w.r.t. time This figure shows that initially increases with time and after
certain period of time, it attains its equilibrium level. \&kso note thay increases as;
increases. Fig. 5 shows thatincreases with time ang decreases as, increases, and
finally settles down at its equilibrium level.

— 0,715
- - 02:2.0
. 0,725

0 5 10 15 20 25
t

Fig. 5. Case |: graph af verseg for different value ofr» obtained witho, = 2.5 and
other values of parameters are same as in Fig. 1.

Figs. 6-10 correspond to model (1) when predator is partitdpendent on the prey.
Figs. 6-8 show the behavior of prey species in unreservedlwith respect to time.
Fig. 6 shows that behavior af with time when predator is partially dependent on the
prey. It is noted that exhibits periodic behavior for some time and finally it stttlown
at its equilibrium level. It is also observed that initialtyincreases as; increases and
after certain timer decreases asg; increases, and finally obtains its equilibrium level.
From Fig. 7 we note that has oscillatory behavior for certain time, and then it ssttl
down at its equilibrium level. It is also noted that initialt increases as, increases, but
after certain time this behavior is just reversed. Fig. 8xshihe behavior of w.r.t. timet
for different values of3;. Itis noted that if3; is small, then initiallyz increases and then
exhibits oscillatory behavior and finally obtains its eduium level. But if 5; is larger
than a threshold values, then initiallydecreases, then after a slight increase it obtains its
equilibrium level. It is also observed thatdecreases g3, increases. Fig. 9 and Fig. 10
show the behavior of prey species in reserved area w.r.e ttirfrom these figures it is
noted that y increases with time and finally settles dowrsagdguilibrium level. It is also
noted thaty increases as; increases whereasdecreases as, increases. Itis observed
that the prey species in reserved zone do not exhibit pertoetiavior.
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11 16
1t 1 14 4
— 025 .
ook —- 065 A — o185 1
. 05105 -~ 0=20
. 025
08f | 1t ]
x
0.7f 1 osf 4
06 = —= — 1 os6f 1
osf - 1 o4t 1
04 . : : : 02 : .
o 5 10 15 20 25 15 20 25

t +

Fig. 6. Case II: graph of verseg for diffe-  Fig. 7. Case Il: graph of verse< for diffe-
rent value ofs; obtained using parameters: rent value ofo2 obtained witho; = 2.5 and
a=3,s=35K=40,L =50, M =30, other values of parameters are same as in

ﬁl =2, ﬁg =1,09 = 1.5. Flg. 6.
14 30
12f 1 ottt
25 1
— 52
g2
1 B= ,
I 20 1
1
1
o8t i 1
I
! >15 — o725 1
0.6F 1 4 - - 01=A,5
| | . 0,765
I 10} | 1
0.4F 1 4
1
.
1 st 1
02 3 1 F
H
HA
(NS
o . . . . o . . . .
(] 5 10 15 20 25 0 5 10 15 20 25

t t

Fig. 8. Case II: graph of verseg for diffe-  Fig. 9. Case II: graph of verses for diffe-
rent value of; obtained witho; =2.5 and rent value ofo; obtained using the same
other values of parameters are same as in  values of parameters as in Fig. 6.

Fig. 6.

30

251

20

— 0,515
— UZinO
. 0,725

0 5 10 15 20 25
+

Fig. 10. Case lI: graph of versest for different value ofs» obtained withoy = 2.5
and other values of parameters are same as in Fig. 6.
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6 Conclusions

In this paper, a mathematical model has been proposed alydad#o study the role of a
reserved zone on the dynamics of predator-prey system. ‘Bldelrhas been analyzed in
two cases: first when predator species are wholly dependaheqrey and second when
predator species are partially dependent on the prey inrtresarved zone. In both cases,
computer simulations with MATLAB have been performed taistthe effects of various
parameters on the dynamics of the system. By analytical anterical simulations, the
following observations have been made:

1. In the absence of predator, the density of prey is maximuneserved as well as
unreserved zone.

2. Inthe case when predators are wholly dependent on thethegycumulative density
of prey decreases in comparison to the case 1.

3. In the case when predators are partially dependent onrélyeapd alternative food
is also made available to predators in unreserved zone ttigetumulative density
of the prey decreases in comparison to case 1, but it ingéas®mparison to the
case 2 and density of predator also increases in compadgbe tase 2.

This shows that an alternative resource for the predatatteibsuited in comparison
to the wholly dependent case as it leads an increase in ttsitylehthe prey and predator
both that ensures the survival of prey and predator in abetg. In both cases, it has
been found that prey species has oscillatory behavior irutireserved zone where as
oscillatory behavior has not been observed for prey spétide reserved zone.

By using stability theory of ordinary differential equat&® it has been shown that
the positive equilibrium, whenever exists, is always glyb@symptotically stable in both
the cases, namely predators are wholly or partially depgralethe prey species. This
shows that reserve zone has a stabilizing effect on the mmedeey system. This study
suggests that the role of reserved zone is an importantratiag concept in ecology and
evolution. By creating reserved zones in the habitat wheeelaior have no access or
chance of settling, the prey species can grow without argreat disturbances and hence
the prey species can be maintained at an appropriate level.
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