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Abstract. In this paper, a mathematical model is proposed and analysedto study the
dynamics of a prey-predator model. It is assumed that the habitat is divided into two
zones, namely free zone and reserved zone. Predators are notallowed to enter into the
reserved zone. Criteria for the coexistence of predator-prey are obtained. The role of
reserved zone is investigated and it is shown that the reserve zone has a stabilizing effect
on predator-prey interactions.
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1 Introduction

The biosphere is an important zone for biological activities that are mainly responsible
for the changes in ecology and environment. The co-existence of interacting biolo-
gical species has been of great interest in the past few decades and has been studied
extensively using mathematical models by several researchers [1–10]. Many biological
species have been driven to extinction and many others are atthe verge of extinction
due to several external forces such as overexploitation, over predation, environmental
pollution, mismanagement of the habitat, etc. In order to protect these species, appropriate
measures such as restriction on harvesting, creating reserved zones/refuges, etc. should be
adopted that will decrease the interaction of these specieswith external forces. The role
of reserve zones/refuges in predator-prey dynamics has received considerable attention
and has also been investigated by several researchers [11–21]. In particular, Collings [11]
studied the nonlinear behavior of predator-prey model withrefuge protecting a constant
proportion of prey and wit temperature dependent parameters chosen appropriately for a
mite interaction on fruit species. He showed the existence of a temperature interval in
which increasing the amount of refuge dynamically destabilizes the system; and on part
of this interval the interaction is less likely to persist inthat predator and prey minimum
population densities are lower than when no refuge is available. Krivan [12] proposed a
mathematical model and investigated the effects of optimalantipredator behavior of prey
in predator-prey system. He showed that optimal antipredator behavior of prey leads to
persistence and reduction of oscillations in population densities. Chattopadhyay et al. [13]
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studied a prey-predator model with some cover on prey species. They observed that global
stability of the system around positive equilibrium does not necessarily imply the perma-
nence of the system. Recently, Kar [18] proposed a predator-prey model incorporating
a prey refuge and independent harvesting on either species.He showed that using the
harvesting efforts as control, it is possible to break the cyclic behavior of the system.

In the above investigations, the dynamics of predator living in unreserved zone
together with prey has not been studied explicitly. The reserve zone plays a vital role
in aquatic environment for the protection of fishery resources from its overexploitation
[22–26]. In particular, Dubey et al. [22] proposed and analyzed a mathematical model to
study the dynamics of a fishery resource system in an aquatic environment consisting of
two zones, namely a free fishing zone and a reserve zone where fishing is strictly prohibi-
ted. It was suggested that even if fishery is exploited continuously in the unreserved zone,
fish populations can be maintained at an appropriate equilibrium level in the habitat. The
model presented in this paper will be of great use in a National Park where prey-predator
are living together. The prey species which are to be conserved can be protected from
predators by creating an artificial boundary or shelter thatwill divide the habitat into two
zones – one reserved and other unreserved. The entry of predators into reserved zone can
be restricted by the artificial boundary that may be in the form of fencing of suitable mesh
size through which prey can pass but predators can not. The model studied in Section 4
(when predator is partially dependent on the prey) can also be used in fishery resources
where fisherman can be thought of as predator (in fact, generalist predator) and fishing is
not permitted in a particular zone, called the reserved zone.

Keeping this in view, we consider a habitat consisting of twozones: an unreserved
zone where prey and predator can move freely and a reserved zone where prey can live
but predators are not allowed to enter inside. We consider the two cases: one when
the predator is wholly dependent on the prey and other when the predator is partially
dependent on the prey in the unreserved zone. In fact, we consider the model developed
in [22] by incorporating an additional equation for predator in the unreserved zone. Then
we study the coexistence and stability behavior of predator-prey system in the habitat.

2 Mathematical model

Consider a habitat where prey and predator species are living together. It is assumed that
the habitat is divided into two zones, namely, reserved and unreserved zones. It is assumed
that predator species are not allowed to enter inside the reserved zone whereas the free
mixing of prey species from reserved to unreserved zone and vice-versa is permissible.

Let x(t) be the density of prey species in unreserved zone,y(t) the density of prey
species in reserved zone andz(t) the density of the predator species at any timet ≥ 0.
Let σ1 be the migration rate coefficient of the prey species from unreserved to reserved
zone andσ2 the migration rate coefficient of prey species from reservedto unreserved
zone. It is assumed that the prey species in both zones are growing logistically.

Keeping these in view and following Dubey et al. [22], the dynamics of system may
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be governed by the following system of ordinary differential equations:

dx

dt
= rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz,

dy

dt
= sy

(
1 −

y

L

)
+ σ1x − σ2y,

dz

dt
= Q(z) − β0z,

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

(1)

In model (1),r ands are intrinsic growth rate coefficients of prey species in unreserved
and reserved zones respectively;K andL are their respective carrying capacities.β1 is
the depletion rate coefficient of the prey species due to the predator, andβ0 is the natural
death rate coefficient of the predator species.

In model (1), the functionQ(z) represents the growth rate of predator. The model
(1) is analyzed in two different cases, namely,

(i) Q(z) = β2xz, (2)

i.e. when predator is wholly dependent on the prey species;

(ii) Q(z) = bz

(
1 −

z

M0

)
+ β2xz (3)

i.e. when the predator is partially dependent on the prey. Inthis case, the prey species of
densityx(t) can be thought of as an alternative resource for the predator.

By denotinga = b − β0 > 0, M = M0(b − β0)/b we note that the third equation
of model (1) can be written as

dz

dt
= az

(
1 −

z

M

)
+ β2xz. (4)

In model system (1)–(4),r, s, σ1, σ2, β1, β2, β0 anda are assumed to be positive con-
stants.

Now we present the analysis of model (1) in two cases (2) and (3) by using stability
theory of ordinary differential equations [27].

3 Case I: when predator is wholly dependent on the prey

In this case,Q(z) satisfies equation (2).

3.1 Existence of equilibria

It can be checked that model (1), whenQ(z) satisfies (2), has only three nonnegative
equilibria, namelyE0(0, 0, 0), E1(x̂, ŷ, 0) and E(x, y, z). The equilibriumE0 exists
obviously and we shall show the existence ofE1 andE as follows:
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3.1.1 Existence of E1(x̂, ŷ, 0)

Herex̂ andŷ are the positive solutions of the following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y = 0, (5a)

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0. (5b)

From equation (5a), we have

y =
1

σ2

[
rx2

K
− (r − σ1)x

]
. (6)

Substituting the value ofy from equation (6) into equation (5b), a little algebraic manipu-
lation yields

ax3 + bx2 + cx + d = 0, (7)

where

a =
sr2

Lσ2
2K

2
, b =

−2rs(r − σ1)

KLσ2
2

,

c =
s(r − σ1)

2

Lσ2
2

−
(s − σ2)r

σ2K
, d =

(r − σ1)(s − σ2)

σ2

− σ1.

It may be noted that equation (7) has a unique positive solution x = x∗ if the
following inequalities hold:

s(r − σ1)
2

Lσ2

<
(s − σ2)r

K
, (8a)

(r − σ1)(s − σ2) < σ1σ2. (8b)

From the model system (1) we note that if there is no migrationof the prey species
from reserved to unreserved zone (i.e.σ2 = 0) andr − σ1 < 0, then dx

dt
< 0. Similarly

if there is no migration from of the prey species from unreserved to reserved zone (i.e.
σ1 = 0) ands − σ2 < 0, thendy

dt
< 0. Hence it is natural to assume that

r > σ1 and s > σ2. (8c)

Knowing the value of̂x, the value of̂y can be computed from equation (6). It may also
be noted that for̂y to be positive, we must have

x̂ >
K

r
(r − σ1). (9)
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3.1.2 Existence of E(x, y, z)

Herex, y, z are the positive solutions of the following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz = 0,

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0,

β2xz − β0z = 0.

Solving the above equations, we get,

x =
β0

β2

, (10a)

y =
1

2sβ2

[
(s − σ2) +

√
(s − σ2)2 + 4sσ1Lβ0β2

]
, (10b)

z =
β2

β0β1

[
σ2y + (r − σ1)

β0

β2

−
rβ2

0

Kβ2
2

]
. (10c)

Forz to be positive, we must have

σ2y + (r − σ1)
β0

β2

>
rβ2

0

Kβ2
2

. (11)

Equation (11) gives a threshold value of the carrying capacity of the free access zone for
the survival of predators.

In the following lemma, we show that all solutions of model (1) are nonnegative and
bounded.

Lemma 1. The set

Ω =

{
(x, y, z) ∈ R

+

3 : 0 < w = x + y + z ≤
µ

η

}

is a region of the attraction for all solutions initiating in the interior of the positive orthant,
where η is a constant such that

0 < η < β0, µ =
K

4r
(r + η)2 +

L

4s
(s + η)2, β1 ≥ β2.

Proof. Let w(t) = x(t) + y(t) + z(t) andη > 0 be a constant. Then

dw

dt
+ ηW = (r + η)x −

rx2

K
+ (s + η)y −

sy2

L
− (β1 − β2)xz − (β0 − η)z. (12)

Sinceβ1 is the depletion rate coefficient of prey due to its intake by the predator andβ2

is the growth rate coefficient of predator due to its interaction with their prey, and hence
it is natural to assume thatβ1 ≥ β2.
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Now chooseη such that0 < η < β0.
Then equation (12) can be written as

dW

dt
+ ηw ≤ (r + η)x −

rx2

K
+ (s + η)y −

sy2

L

=
K

4r
(r + η)2 −

r

K

{
x −

K

2r
(r + η)

}2

+
L

4s
(s + η)2 −

s

L

{
y −

L

2s
(s + η)

}2

≤
K

4r
(r + η)2 +

L

4s
(s + η)2 = µ(say).

By using the differential inequality [28], we obtain

0 < w
(
x(t), y(t), z(t)

)
≤

µ

η
(1 − e−ηt) +

(
x(0), y(0), z(0)

)
e−ηt.

Taking limit whent → ∞, we have,0 < w(t) ≤ µ
η

, proving the lemma.

3.2 Stability analysis

By computing the variational matrices corresponding to each equilibrium, we note the
following:

1. E0 is a saddle point with stable manifold locally in thez-direction.

2. If β2x̂ > β0 thenE1 is a saddle point with stable manifold locally in thexy-plane
and with unstable manifold locally in thez-direction.

3. If β2x̂ < β0 thenE1 is locally asymptotically stable.

In the following theorem, we show that the model system (1) does not have any
closed trajectory in the interior of the positive quadrant of thexy-plane.

Theorem 1. The model system (1) under the assumption (2) can not have any periodic
solution in the interior of the positive quadrant of the xy-plane.

Proof. Let H(x, y) = 1

xy
. Clearly H(x, y) is positive in the interior of the positive

quadrant of thexy-plane. Let

h1(x, y) = rx

(
1 −

x

K

)
− σ1x + σ2y,

h2(x, y) = sy

(
1 −

y

L

)
+ σ1x − σ2y.

Then

∆(x, y) =
∂

∂x
(h1H) +

∂

∂y
(h2H) = −

1

y

(
r

K
+

σ2y

x2

)
−

1

x

(
s

L
+

σ1x

y2

)
< 0.
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From the above equation, we note that∆(x, y) does not change sign and is not identically
zero in the interior of the positive quadrant of thexy-plane. By Dulac-Bendixon criteria,
it follows that there is no closed trajectory in the interiorof the positive quadrant of the
xy-plane, and hence the theorem follows.

In the following theorem, we show thatE is locally asymptotically stable.

Theorem 2. The interior equilibrium E is locally asymptotically stable.

Proof. In order to prove this theorem, we first linearize model (1) bytaking the following
transformations:

x = x + X, y = y + Y, z = z + Z.

Now we consider the following positive definite function:

V (t) =
1

2
X2 +

1

2
c1Y

2 +
1

2
c2Z

2,

wherec1 andc2 are positive constants to be chosen suitably.
Now differentiatingV with respect to timet along the linear version of model (1),

we get

dV

dt
= −

(
rx

K
+

σ2y

x

)
X2

− c1

(
sy

L
+

σ1x

y

)
Y 2

+ XY (σ2 + c1σ1) + XZ(c2β2z − β1x).

Choosingc2 = β1x
β2z

we note thatV̇ is negative definite if

(σ2 + c1σ1)
2 < 4c1

(
rx

K
+

σ2y

x

)(
sy

L
+

σ1x

y

)
.

The above equation can further be written as

(σ2 − c1σ1)
2 + 4c1σ1σ2 < 4c1

(
rx

K
+

σ2y

x

)(
sy

L
+

σ1x

y

)
.

It may be noted that if we choosec1 = σ2

σ1

then the above condition is automatically satis-
fied. This shows thatV is a Liapunov function [27], and hence the theorem follows.

In the following theorem, we are able to show thatE is globally asymptotically
stable.

Theorem 3. The interior equilibrium E is globally asymptotically stable with respect to
all solutions initiating in the interior of the positive orthant.
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Proof. Consider the following positive definite function aboutE,

W (t) =

(
x − x − x ln

x

x

)
+ c1

(
y − y − y ln

y

y

)
+ c2

(
z − z − z ln

z

z

)
.

DifferentiatingW with respect to timet along the solutions of model (1), we get

dW

dt
= −

r

K
(x − x)2 −

c1s

L
(y − y)2 + (x − x)(z − z)(c2β2 − β1)

+ σ2(x − x)

(
xy − xy

xx

)
+ c1σ1(y − y)

(
xy − xy

yy

)
.

Choosingc1 = yσ2

xσ1

andc2 = β1

β2

, dW
dt

can further be written as

dW

dt
= −

r

K
(x − x)2 −

yσ2s

xσ1L
(y − y)2 −

σ2

xxy
(xy − xy)2,

which is negative definite. HenceW is a Liapunov function [27] with respect toE whose
domain contains the region of attractionΩ, proving the theorem.

4 Case II: when the predator is partially dependent on the prey

In this caseQ(z) satisfies equation (3) and the prey can be thought of as an alternative
food for the predator.

4.1 Existence of equilibria

WhenQ(z) satisfies equation (3), then the third equation of model (1) can be replaced
by equation (4). Then it can be checked that model (1) has fournonnegative equilibria,
namely,F0(0, 0, 0), F1(0, 0, M), F2(x̃, ỹ, 0), F ∗(x∗, y∗, z∗).

The equilibriumsF0 andF1 obviously exist. As in Case I, equilibriumF2(x̃, ỹ, 0)
exists if the inequalities (8a) and (8b) are satisfied. Further, for x̃ to be positive, we must
have

x̃ >
K

r
(r − σ1). (13)

To see the existence ofF ∗, we note thatx∗, y∗, z∗ are the positive solutions of the
following algebraic equations:

rx

(
1 −

x

K

)
− σ1x + σ2y − β1xz = 0, (14a)

sy

(
1 −

y

L

)
+ σ1x − σ2y = 0, (14b)

z =
M

a
(a + β2x). (14c)
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Solving the above system of algebraic equations, we get

Ax3 + Bx2 + Cx + D = 0, (15)

where

A =
s

Lσ2
2

(
r

K
+

β1β2M

a

)
,

B = −
2s

Lσ2
2

(
r

K
+

β1β2M

a

)
(r − σ1 − β1M),

C =
s

Lσ2
2

(r − σ1 − β1M)2 −
s − σ2

σ2

(
r

K
+

β1β2M

a

)
,

D =
s − σ2

σ2

(r − σ1 − β1M) − σ1.

We note that the equation (15) has a real positive rootx = x∗ if the following conditions
are satisfied:

s(r − σ1 − β1M)2 < Lσ2(s − σ2)

(
r

K
+

β1β2M

a

)
, (16a)

(r − σ1 − β1M)(s − σ2) < σ1σ2, (16b)

r − σ1 − β1M > 0. (16c)

Knowing the value ofx∗, the value ofz∗ can be computed from equation (14c) and the
value ofy∗ can be computed from the equation given below:

y∗ =
1

σ2

[(
r

K
+

β1β2M

a

)
x∗2

− (r − σ1 − β1M)x∗

]
. (17)

Fory∗ to be positive, we must have
(

r

K
+

β1β2M

a

)
x∗ > (r − σ1 − β1M). (18)

In the following lemma, we show that the model system (1) is biologically well behaved.
The proof of this lemma is similar to that of Lemma 1, and henceomitted.

Lemma 2. The set

Ω1 =

{
(x, y, z) : w(t) = x(t) + y(t) + z(t), 0 < w(t) ≤

µ∗

η∗

}

attracts all solutions initiating in the interior of the positive orthant, where

µ∗ =
K

4r
(r + η∗)2 +

L

4s
(s + η∗)2 +

M

4a
(a + η∗)2,

and η∗ is a positive constant.

487



B. Dubey

4.2 Stability analysis

In order to study the local stability behavior ofF ∗, we compute the variational matrices
corresponding to each equilibrium. From these matrices, wenote the following:

1. F0 is an unstable equilibrium point.

2. F1 is a saddle point with stable manifold locally in thez-direction and with unstable
manifold locally in thexy-plane.

3. F2 is also a saddle point whose stable manifold is locally in thexy-plane and unstable
manifold locally in thez-direction.

Remark. It may be noted that Theorem 1 will remain valid in the case when predator is
partially dependent on the prey.

In the following theorems, local and global stability behavior of F ∗ have been studied.
The proof of Theorem 4 is similar to that of Theorem 2, and the proof of Theorem 5 is
similar to that of Theorem 3. Hence we omit the proofs of thesetheorems.

Theorem 4. The interior equilibrium F ∗ is locally asymptotically stable.

Theorem 5. The interior equilibrium F ∗ is globally asymptotically stable with respect to
all solutions initiating in the interior of positive orthant.

5 Numerical simulation

In this section we present numerical simulation to illustrate the results obtained in previ-
ous sections. We choose the following values of parameters in model (1):

a = 3, r = 4, s = 3.5, K = 40, L = 50, M = 30,

β0 = 3, β1 = 2, β2 = 1, σ1 = 2.5, σ2 = 1.5.
(19)

With the above values of parameters, we note that conditions(8) and (9) are satisfied.
This shows that equilibrium exists, and it is given by

x̂ = 36.7429, ŷ = 53.2598. (20)

When predator is wholly dependent on the prey, it is noted that the positive equilibrium
E(x, y, z) exists and it is given by

x = 3, y = 10.6406, z = 3.2602. (21)

Further, when the predator is partially dependent on the prey, it is seen that the positive
equilibriumF ∗(x∗, y∗, z∗) exists, and it is given by

x∗ = 10.4939, y∗ = 5.5363, z∗ = 31.0494. (22)

From (20)–(22), we note the following:
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1. When the predator is at zero equilibrium level (z = 0), the total density of the prey
species at equilibrium level is90.0027 (36.7429 + 53.2598).

2. When the predator is completely dependent on the prey, then density of the predator
is 3.2602 while the total density of the prey has decreased from90.0027 to 13.6406.

3. Comparing (21) and (22), it is noted that when the predatoris partially dependent
on the prey, then density of the predator has increased from3.2602 to 31.0494, and
prey density has also increased from13.6406 to 16.0302.

This suggests that an alternative food for the predator leads an increase in the density
of the prey as well as predator.

Figs. 1–5 correspond to model (1) when the predator is whollydependent on the
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Fig. 1. Case I: graph ofx versest for diffe-
rent value ofσ1 obtained using parameters:
s = 3.5, K = 40, L = 50, β0 = 3, β1 = 2,

β2 = 1, σ2 = 1.5.
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Fig. 2. Case I: graph ofx versest for diffe-
rent value ofσ2 obtained withσ1 =2.5 and
other values of parameters are same as in

Fig. 1.
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prey. Fig. 1 shows the behavior ofx with time for different values ofσ1. This figure
shows that initiallyx increases for some time, then it starts decreasing and finally attains
its equilibrium level. We also note that initiallyx decreases asσ1 increases but after
certain time this behavior is just reversal and finallyx settles down at its equilibrium
level. Fig. 2 shows the behavior ofx with time t for different values ofσ2. From this
figure, we note that initiallyx increases asσ2 increases, after certain timex decreases
with σ2 and finally attains its equilibrium level. From Fig. 3, we note that behavior of
x with time t is similar to that of Fig. 1. Fig. 4 shows the behavior of prey species in
reserved area w.r.t. timet. This figure shows that initiallyy increases with time and after
certain period of time, it attains its equilibrium level. Wealso note thaty increases asσ1

increases. Fig. 5 shows thaty increases with time andy decreases asσ2 increases, and
finally settles down at its equilibrium level.
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σ
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Fig. 5. Case I: graph ofy versest for different value ofσ2 obtained withσ1 = 2.5 and
other values of parameters are same as in Fig. 1.

Figs. 6–10 correspond to model (1) when predator is partially dependent on the prey.
Figs. 6–8 show the behavior of prey species in unreserved area with respect to timet.
Fig. 6 shows that behavior ofx with time when predator is partially dependent on the
prey. It is noted thatx exhibits periodic behavior for some time and finally it settles down
at its equilibrium level. It is also observed that initiallyx increases asσ1 increases and
after certain timex decreases asσ1 increases, and finally obtains its equilibrium level.
From Fig. 7 we note thatx has oscillatory behavior for certain time, and then it settles
down at its equilibrium level. It is also noted that initially x increases asσ2 increases, but
after certain time this behavior is just reversed. Fig. 8 shows the behavior ofx w.r.t. timet
for different values ofβ1. It is noted that ifβ1 is small, then initiallyx increases and then
exhibits oscillatory behavior and finally obtains its equilibrium level. But ifβ1 is larger
than a threshold values, then initiallyx decreases, then after a slight increase it obtains its
equilibrium level. It is also observed thatx decreases asβ1 increases. Fig. 9 and Fig. 10
show the behavior of prey species in reserved area w.r.t. time t. From these figures it is
noted that y increases with time and finally settles down at its equilibrium level. It is also
noted thaty increases asσ1 increases whereasy decreases asσ2 increases. It is observed
that the prey species in reserved zone do not exhibit periodic behavior.
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rent value ofσ1 obtained using parameters:
a = 3, s = 3.5, K = 40, L = 50, M = 30,

β1 = 2, β2 = 1, σ2 = 1.5.
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Fig. 7. Case II: graph ofx versest for diffe-
rent value ofσ2 obtained withσ1 =2.5 and
other values of parameters are same as in

Fig. 6.
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Fig. 8. Case II: graph ofx versest for diffe-
rent value ofβ1 obtained withσ1 =2.5 and
other values of parameters are same as in

Fig. 6.
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Fig. 9. Case II: graph ofy versest for diffe-
rent value ofσ1 obtained using the same

values of parameters as in Fig. 6.
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Fig. 10. Case II: graph ofy versest for different value ofσ2 obtained withσ1 = 2.5

and other values of parameters are same as in Fig. 6.
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6 Conclusions

In this paper, a mathematical model has been proposed and analyzed to study the role of a
reserved zone on the dynamics of predator-prey system. The model has been analyzed in
two cases: first when predator species are wholly dependent on the prey and second when
predator species are partially dependent on the prey in the unreserved zone. In both cases,
computer simulations with MATLAB have been performed to study the effects of various
parameters on the dynamics of the system. By analytical and numerical simulations, the
following observations have been made:

1. In the absence of predator, the density of prey is maximum in reserved as well as
unreserved zone.

2. In the case when predators are wholly dependent on the prey, then cumulative density
of prey decreases in comparison to the case 1.

3. In the case when predators are partially dependent on the prey and alternative food
is also made available to predators in unreserved zone, thenthe cumulative density
of the prey decreases in comparison to case 1, but it increases in comparison to the
case 2 and density of predator also increases in comparison to the case 2.

This shows that an alternative resource for the predator is better suited in comparison
to the wholly dependent case as it leads an increase in the density of the prey and predator
both that ensures the survival of prey and predator in a better way. In both cases, it has
been found that prey species has oscillatory behavior in theunreserved zone where as
oscillatory behavior has not been observed for prey speciesin the reserved zone.

By using stability theory of ordinary differential equations, it has been shown that
the positive equilibrium, whenever exists, is always globally asymptotically stable in both
the cases, namely predators are wholly or partially dependent on the prey species. This
shows that reserve zone has a stabilizing effect on the predator-prey system. This study
suggests that the role of reserved zone is an important integrating concept in ecology and
evolution. By creating reserved zones in the habitat where predator have no access or
chance of settling, the prey species can grow without any external disturbances and hence
the prey species can be maintained at an appropriate level.
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