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Abstract. In this paper, we study a higher order fractional differential equation with integral
boundary conditions and a parameter. Under different conditions of nonlinearity, existence and
nonexistence results for positive solutions are derived in terms of different intervals of parameter.
Our approach relies on the Guo–Krasnoselskii fixed point theorem on cones.
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1 Introduction

In this paper, we investigate the following fractional differential equation with integral
boundary conditions and a parameter:

−Dη−2
0+

(
u′′(t)

)
+ λf

(
t, u(t)

)
= 0, t ∈ (0, 1),

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, Dκ−2
0+

(
u′′(t)

)∣∣
t=1

= 0,

αu(0)− βu′(0) =

1∫
0

u(s) dA(s), γu(1) + δu′(1) =

1∫
0

u(s) dB(s),

(1)

where Dη−2
0+ , Dκ−2

0+ are the standard Riemann–Liouville fractional derivative of orders
η − 2 and κ − 2, respectively. n − 1 < η 6 n, η > 4, 2 6 κ 6 n − 2, α, β, γ, δ > 0,
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∫ 1

0
u(s) dA(s) and

∫ 1

0
u(s) dB(s) denote the Riemann–Stieltjes integrals of u with re-

spect to A and B, respectively. A(t), B(t) are nondecreasing on [0, 1], f : [0, 1] ×
[0,+∞)→ [0,+∞) is continuous, λ > 0 is a parameter.

Fractional differential equations describe many phenomena in various fields of scien-
tific and engineering disciplines such as physics, aerodynamics, viscoelasticity, electro-
magnetics, control theory, chemistry, biology, economics etc.; see, for example, [32, 34,
36, 55]. For the latest development direction of the fractional differential equations, see
the references [1–4, 7, 9–11, 16, 19, 25, 28, 39, 40, 45, 46, 49, 53, 54, 56].

Boundary value problems (BVPs for short) with integral boundary conditions for or-
dinary differential equations represent a very interesting and important class of problems
and arise in the study of various biological, physical and chemical processes [5, 6, 31, 44]
such as heat conduction, thermo-elasticity, chemical engineering, underground water flow
and plasma physics. The existence of solutions or positive solutions for such class of
problems has attracted much attention; see, for example, [8, 12–15, 20–24, 26, 27, 29, 30,
35, 37, 41–43, 47, 48, 50–52] and the references therein.

Recently, Gunendi and Yaslan [17] considered the multi-point BVP for higher order
fractional differential equation

−Dη−2
0+

(
u′′(t)

)
+ f

(
t, u(t)

)
= 0, t ∈ [0, 1],

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, u′′′(1) = 0,

αu(0)− βu′(0) =

m−2∑
p=1

ap

ξp∫
0

u(s) ds, γu(1) + δu′(1) =

m−2∑
p=1

bp

ξp∫
0

u(s) ds,

where Dη−2
0+ denotes the Riemann–Liouville fractional derivative of order η− 2, n− 1 <

η 6 n, m,n > 3, α, β, γ, δ > 0, ap, bp > 0 are given constants, 0 < ξ1 < · · · <
ξm−2 < 1, f : [0, 1] × [0,∞) → [0,∞) is continuous. The existence results of at least
one, two and three positive solutions are obtained by the four functionals fixed point
theorem, the Avery–Henderson fixed point theorem and the Legget–Williams fixed point
theorem, respectively.

In the present paper, we consider the more general fractional differential equation
integral BVP (1). Under different conditions of the function f , existence and nonexistence
results for positive solutions are derived in terms of different intervals of parameter λ. Our
approach relies on the Guo–Krasnoselskii fixed point theorem on cones.

We express the fixed point operator with a Green’s function, which is a convolution.
The idea constructing Green’s functions as convolutions of Green’s functions for lower
order BVPs is from the work of Eloe and Neugebauer [10]. The paper [10] contains some
interesting ideas and develops the convolution method to several families of BVPs.

This paper is arranged as follows. In Section 2, we present some definitions and
preliminary lemmas. In Section 3, we establish the existence and nonexistence of positive
solutions for BVP (1) by using the fixed point theorem on cones. An example is also given
to illustrate the main results in Section 4.
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2 Preliminaries

We present the definitions of fractional calculus and some auxiliary results that are useful
to the proof of our main results.

Definition 1. (See [32, 34, 36, 55].) The Riemann–Liouville fractional integral of order
α > 0 of a function h : (0,+∞)→ R is given by

Iα0+h(t) =
1

Γ(α)

t∫
0

(t− s)α−1h(s) ds, t > 0,

provided the right-hand side is pointwise defined on (0,+∞).

Definition 2. (See [32,34,36,55].) The Riemann–Liouville fractional derivative of order
α > 0 of a continuous function h : (0,+∞)→ R is given by

Dα
0+h(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

h(s)

(t− s)α−n+1
ds,

where n is the smallest integer not less than α, provided that the right-hand side is
pointwise defined on (0,+∞).

Lemma 1. (See [32, 34, 36].)

(i) If u ∈ L1[0, 1], ρ > σ > 0 and n ∈ N, then

Dσ
0+I

ρ
0+u(t) = Iρ−σ0+ u(t), Dσ

0+I
σ
0+u(t) = u(t),

dn

dtn
(
Dσ

0+u(t)
)

= Dn+σ
0+ u(t).

(ii) If ν > 0, σ > 0, then

Dν
0+t

σ =
Γ(σ + 1)

Γ(σ − ν + 1)
tσ−ν .

(iii) Let α > 0. Then the following equality holds for u ∈ L1[0, 1] and Dα
0+u ∈

L1[0, 1]:

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where ci ∈ R, i = 1, 2, 3, . . . , n, n− 1 < α 6 n.

Let −u′′(t) = y(t), then the BVP

−Dη−2
0+

(
u′′(t)

)
+ λf

(
t, u(t)

)
= 0, t ∈ (0, 1),

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, Dκ−2
0+

(
u′′(t)

)∣∣
t=1

= 0
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becomes

Dη−2
0+ y(t) + λf

(
t, u(t)

)
= 0, t ∈ (0, 1),

y(0) = y′(0) = · · · = y(n−4)(0) = 0, Dκ−2
0+ y(1) = 0.

Using Lemma 1, by arguments similar to Lemma 2.4 in [17], we have the following
result.

Lemma 2. Let h ∈ C[0, 1]. Then the BVP

Dη−2
0+ y(t) + h(t) = 0, t ∈ (0, 1),

y(0) = y′(0) = · · · = y(n−4)(0) = 0, Dκ−2
0+ y(1) = 0

has a unique solution

y(t) =

1∫
0

H(κ; t, s)h(s) ds, t ∈ [0, 1],

where

H(κ; t, s) =

{
(1− s)η−κ−1tη−3/Γ(η − 2), 0 6 t 6 s 6 1,

(1− s)η−κ−1tη−3 − (t− s)η−3/Γ(η − 2), 0 6 s 6 t 6 1.

By direction computations we obtain the properties of H(κ; t, s).

Lemma 3.

(i) 0 6 H(κ; t, s) 6
(1− s)η−κ−1tη−3

Γ(η − 2)
6

1

Γ(η − 2)
, t, s ∈ [0, 1].

(ii) If 2 6 κ1 < κ2 6 n− 2, then

0 < H(κ1; t, s) < H(κ2; t, s), (t, s) ∈ (0, 1)× (0, 1).

(iii) If 3 6 κ 6 n − 2, then Ht(κ; t, s) > 0 for (t, s) ∈ [0, 1] × [0, 1]; if 2 6 κ < 3,
then Ht(κ; t, s) changes sign on [0, 1]× [0, 1].

Now we consider the following integral BVP:

−u′′(t) = y(t), t ∈ (0, 1),

αu(0)− βu′(0) =

1∫
0

u(s) dA(s), γu(1) + δu′(1) =

1∫
0

u(s) dB(s).

Let
φ(t) = αt+ β, ψ(t) = γ + δ − γt, w = αγ + αδ + βγ,

G0(t, s) =

{
φ(t)ψ(s)/w, 0 6 t 6 s 6 1,

φ(s)ψ(t)/w, 0 6 s 6 t 6 1,
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then G0(t, s) is the Green’s function of the following homogeneous differential equation
BVP:

−u′′(t) = 0, t ∈ (0, 1),

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0.

Define

a(t) =
ψ(t)

w
, b(t) =

φ(t)

w
,

then a(t) and b(t) are the solutions of

−a′′(t) = 0, t ∈ (0, 1),

αa(0)− βa′(0) = 1, γa(1) + δa′(1) = 0

and
−b′′(t) = 0, t ∈ (0, 1),

αb(0)− βb′(0) = 0, γb(1) + δb′(1) = 1,

respectively.
Denote

v1 = 1−
1∫

0

a(t) dA(t), v2 = 1−
1∫

0

b(t) dB(t),

v3 =

1∫
0

a(t) dB(t), v4 =

1∫
0

b(t) dA(t),

V (s) =
v2
∫ 1

0
G0(t, s) dA(t) + v4

∫ 1

0
G0(t, s) dB(t)

v1v2 − v3v4
,

W (s) =
v1
∫ 1

0
G0(t, s) dB(t) + v3

∫ 1

0
G0(t, s) dA(t)

v1v2 − v3v4
.

We will use the following assumption:

(H) v1 > 0, v1v2 − v3v4 > 0.

Lemma 4. (See [33].) Assume that (H) holds. For any y ∈ C[0, 1], u is the solution of
the BVP

−u′′(t) = y(t), t ∈ (0, 1),

αu(0)− βu′(0) =

1∫
0

u(s) dA(s), γu(1) + δu′(1) =

1∫
0

u(s) dB(s)
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if and only if u can be expressed by

u(t) =

1∫
0

G(t, s)y(s) ds, t ∈ [0, 1],

where
G(t, s) = G0(t, s) + a(t)V (s) + b(t)W (s), t, s ∈ [0, 1].

Lemma 5. (See [33].)

0 < γ0G0(s, s) 6 G0(t, s) 6 G0(s, s) 6
M2

w
, t, s ∈ [0, 1],

where
M = max{α+ β, γ + δ}, γ0 =

1

M
min{β, δ}.

Lemma 6. Assume that (H) holds, then

γ0Φ(s) 6 G(t, s) 6 Φ(s), t, s ∈ [0, 1],

where
Φ(s) = G0(s, s) +

γ + δ

w
V (s) +

α+ β

w
W (s).

Proof. By using Lemma 5, for any t, s ∈ [0, 1], we obtain

G(t, s) 6 G0(s, s) +
γ + δ

w
V (s) +

α+ β

w
W (s) = Φ(s).

On the other hand, by Lemma 5, we deduce

G(t, s) > γ0G0(s, s) +
δ

w
V (s) +

β

w
W (s)

> γ0

[
G0(s, s) +

γ + δ

w
V (s) +

α+ β

w
W (s)

]
= γ0Φ(s), t, s ∈ [0, 1].

By using Lemmas 2 and 4 a solution of integral equation

u(t) = λ

1∫
0

G(t, s)

1∫
0

H(κ; s, τ)f
(
τ, u(τ)

)
dτ ds, t ∈ [0, 1],

is a solution for BVP (1). As in [10], the integral equation can be rewritten in terms of
a Green’s function, which is a convolution of G and H . In fact,

u(t) = λ

1∫
0

G(κ; t, s)f
(
s, u(s)

)
ds,

Nonlinear Anal. Model. Control, 24(2):210–223



216 X. Hao et al.

where G(κ; t, s) is the Green’s function for BVP (1); in particular,

G(κ; t, s) =

1∫
0

G(t, τ)H(κ; τ, s) dτ, (t, s) ∈ [0, 1]× [0, 1].

Lemma 7. Assume that (H) holds. Then the function G(κ; t, s) has the properties:

(i) If 2 6 κ1 < κ2 6 n− 2, then

0 < G(κ1; t, s) < G(κ2; t, s), (t, s) ∈ (0, 1)× (0, 1).

(ii) γ0G(s) 6 G(κ; t, s) 6 G(s), t, s ∈ [0, 1],

where

G(s) =

1∫
0

Φ(τ)H(κ; τ, s) dτ, s ∈ [0, 1].

Proof. By Lemma 3 and expression of G(κ; t, s) it is easy to see that (i) holds. In the
following, we will prove (ii). By using Lemma 6, for any t, s ∈ [0, 1], we deduce

G(κ; t, s) 6

1∫
0

Φ(τ)H(κ; τ, s) dτ = G(s),

and

G(κ; t, s) >

1∫
0

γ0Φ(τ)H(κ; τ, s) dτ = γ0G(s).

Set E = C[0, 1], then E is a Banach space with the norm ‖u‖ = supt∈[0,1] |u(t)|. Let

P =
{
u ∈ E: u(t) > 0, min

06t61
u(t) > γ0‖u‖

}
.

It is easy to see that P is a cone in E. We define the operator T : E → E as

Tu(t) = λ

1∫
0

G(κ; t, s)f
(
s, u(s)

)
ds, t ∈ [0, 1].

It is clear that if u ∈ P is a fixed point of T , then u is a positive solution of BVP (1).
By using standard arguments we obtain the following lemma with respect to completely
continuous operator.

Lemma 8. Assume that (H) holds, then T : P → P is a completely continuous operator.

The main tool in the paper is the following Guo–Krasnoselskii fixed point theorem on
cones.

https://www.mii.vu.lt/NA
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Lemma 9. (See [18].) LetE be a Banach space and P be a cone inE. AssumeΩ1 andΩ2

are bounded open subsets of E with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let A : P ∩ (Ω2 \Ω1)→ P
be a completely continuous operator. If the following conditions are satisfied:

(i) ‖Ax‖ 6 ‖x‖ for all x ∈ P ∩ ∂Ω1, ‖Ax‖ > ‖x‖ for all x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ > ‖x‖ for all x ∈ P ∩ ∂Ω1, ‖Ax‖ 6 ‖x‖ for all x ∈ P ∩ ∂Ω2,

then A has at least one fixed point in P ∩ (Ω2 \Ω1).

3 Main results

Denote

fs0 = lim sup
x→0+

max
t∈[0,1]

f(t, x)

x
, f i0 = lim inf

x→0+
min
t∈[0,1]

f(t, x)

x
,

fs∞ = lim sup
x→∞

max
t∈[0,1]

f(t, x)

x
, f i∞ = lim inf

x→∞
min
t∈[0,1]

f(t, x)

x
,

L =

1∫
0

G(s) ds, K1 =
1

γ20Lf
i
∞
, K2 =

1

Lfs0
, K3 =

1

γ20Lf
i
0

, K4 =
1

Lfs∞
.

By expressions of Φ(τ) and H(κ; τ, s) we obtain 0 < L < +∞.

Theorem 1. Assume that (H) holds. If fs0 , f
i
∞ ∈ (0,∞) and K1 < K2, then for any

λ ∈ (K1,K2), BVP (1) has at least one positive solution.

Proof. For any λ ∈ (K1,K2), there exists 0 < ε < f i∞ such that

1

γ20L(f i∞ − ε)
6 λ 6

1

L(fs0 + ε)
.

By definition of fs0 there exists R1 > 0 such that

f(t, x) 6
(
fs0 + ε

)
x, t ∈ [0, 1], 0 6 x 6 R1.

We define Ω1 = {u ∈ E: ‖u‖ < R1}. For any u ∈ P ∩ ∂Ω1 and t ∈ [0, 1], we have

Tu(t) 6 λ

1∫
0

G(s)
(
fs0 + ε

)
u(s) ds 6 λL

(
fs0 + ε

)
‖u‖ 6 ‖u‖.

Therefore, we obtain
‖Tu‖ 6 ‖u‖, u ∈ P ∩ ∂Ω1. (2)

On the other hand, by definition of f i∞, there exists R2 > 0 such that

f(t, x) >
(
f i∞ − ε

)
x, t ∈ [0, 1], x > R2.

Nonlinear Anal. Model. Control, 24(2):210–223
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We choose R2 = max{2R1, R2/γ0} and define Ω2 = {u ∈ E: ‖u‖ < R2}. Then for
any u ∈ P ∩ ∂Ω2 and t ∈ [0, 1], we obtain u(t) > γ0‖u‖ > R2 and

Tu(t) > λ

1∫
0

γ0G(s)
(
f i∞ − ε

)
u(s) ds > λγ20L

(
f i∞ − ε

)
‖u‖ > ‖u‖.

Then
‖Tu‖ > ‖u‖, u ∈ P ∩ ∂Ω2. (3)

By (2), (3) and Lemma 9 we conclude that T has a fixed point u ∈ P ∩(Ω2 \Ω1).

Theorem 2. Assume that (H) holds. If f i0, fs∞ ∈ (0,∞) and K3 < K4, then for any
λ ∈ (K3,K4), BVP (1) has at least one positive solution.

Proof. For any λ ∈ (K3,K4), there exists 0 < ε < f i0 such that

1

γ20L(f i0 − ε)
6 λ 6

1

L(fs∞ + ε)
.

By definition of f i0 there exists R3 > 0 such that

f(t, x) >
(
f i0 − ε

)
x, t ∈ [0, 1], 0 6 x 6 R3.

Let Ω3 = {u ∈ E: ‖u‖ < R3}. For any u ∈ P ∩ ∂Ω3, we obtain

Tu(t) > λ

1∫
0

γ0G(s)
(
f i0 − ε

)
u(s) ds > λγ20L

(
f i0 − ε

)
‖u‖ > ‖u‖, t ∈ [0, 1].

Therefore,
‖Tu‖ > ‖u‖, u ∈ P ∩ ∂Ω3. (4)

We define f∗ : [0, 1]× [0,+∞)→ [0,+∞) as follows:

f∗(t, x) = max
u∈[0,x]

f(t, u), t ∈ [0, 1], x > 0,

then for any t ∈ [0, 1] and u ∈ [0, x], we have f(t, u) 6 f∗(t, x). Clearly, f∗(t, x) is
nondecreasing on x. By the proof of [38] we have

lim sup
x→∞

max
t∈[0,1]

f∗(t, x)

x
6 fs∞.

From the above inequality there exists R4 > 0 such that

f∗(t, x)

x
6 lim sup

u→∞
max
t∈[0,1]

f∗(t, x)

x
+ ε 6 fs∞ + ε, x > R4, t ∈ [0, 1],

https://www.mii.vu.lt/NA
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then f∗(t, x) 6 (fs∞+ε)x for x > R4, t ∈ [0, 1]. We define nowR4 = max{2R3, R4/γ0}
and Ω4 = {u ∈ E: ‖u‖ < R4}. Then for any u ∈ P ∩ ∂Ω4 and t ∈ [0, 1], we have
u(t) > γ0‖u‖ > R4, thus

Tu(t) 6 λ

1∫
0

G(s)f∗
(
s, ‖u‖

)
ds 6 λL

(
fs∞ + ε

)
‖u‖ 6 ‖u‖.

Therefore, we obtain
‖Tu‖ 6 ‖u‖, u ∈ P ∩ ∂Ω4. (5)

By (4), (5) and Lemma 9 we conclude that T has a fixed point u ∈ P ∩(Ω4 \Ω3).

Theorem 3. Assume that (H) holds. If fs0 , f
s
∞ < ∞, then there exists λ∗ > 0 such that

BVP (1) has no positive solution for λ ∈ (0, λ∗).

Proof. By definitions of fs0 and fs∞, there exists M1 > 0 such that

f(t, x) 6M1x, t ∈ [0, 1], x > 0.

Set λ∗ = 1/(LM1). Then for any λ ∈ (0, λ∗), BVP (1) has no positive solution.
Otherwise, we suppose that BVP (1) has a positive solution u, then

u(t) = Tu(t) 6 λ

1∫
0

G(s)M1u(s) ds 6 λLM1‖u‖, t ∈ [0, 1],

and
‖u‖ 6 λLM1‖u‖ < λ∗LM1‖u‖ = ‖u‖.

This contradiction shows that BVP (1) has no positive solution.

Theorem 4. Assume that (H) holds. If f i0, f
i
∞ > 0, then there exists λ̃ > 0 such that

BVP (1) has no positive solution for λ > λ̃.

Proof. By definitions of f i0 and f i∞ there exists m > 0 such that

f(t, x) > mx, t ∈ [0, 1], x > 0.

Set λ̃ = 1/(γ20Lm). Then for any λ > λ̃, BVP (1) has no positive solution. Otherwise,
we suppose that BVP (1) has a positive solution u, then

u(t) = Tu(t) > λ

1∫
0

γ0G(s)mu(s) ds > λγ20Lm‖u‖, t ∈ [0, 1],

thus
‖u‖ > λγ20Lm‖u‖ > λ̃γ20Lm‖u‖ = ‖u‖.

This contradiction shows that BVP (1) has no positive solution.

Nonlinear Anal. Model. Control, 24(2):210–223
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Remark 1. In this paper, compare with paper [17], we study the fractional differential
equation with more general boundary conditions and a parameter. Motivated by the pa-
per [10], we consider a family of BVPs with the family ranging over the higher order
boundary condition at 1, which is different from [17]. We express the fixed point oper-
ator with a Green’s function, which is a convolution. Some properties of the associated
Green’s function are obtained. Under different conditions of the function f , existence and
nonexistence results for positive solutions are derived in terms of different intervals of
parameter λ.

4 An example

Let α = β = δ = 1, γ = 2, η = 9/2, κ = 3, A(s) = B(s) = s. We consider the
following fractional integral BVP:

−D5/2
0+

(
u′′(t)

)
+ λf

(
t, u(t)

)
= 0, t ∈ (0, 1),

u′′(0) = u′′′(0) = 0, u′′′(1) = 0,

u(0)− u′(0) =

1∫
0

u(s) ds, 2u(1) + u′(1) =

1∫
0

u(s) ds.

(6)

Direct computation shows that

υ1 =
3

5
, υ2 =

7

10
, υ3 =

2

5
, υ4 =

3

10
, γ0 =

1

3
, L =

36736

2079
√

3π
.

So assumption (H) is satisfied.

1. We choose f(t, x) = (sin(πt/2) + 1)(2x + 1)x/(5x + 90), then fs0 = 1/45,
f i∞ = 2/5, K1 ≈ 6.927, K1 ≈ 13.854. By Theorem 1 we conclude that BVP (6)
has at least one positive solution for any λ ∈ (K1,K2).

2. We choose f(t, x) = (t + 2)(x + 9)x/(18(2x + 1)), then f i0 = 1, fs∞ = 1/12,
K3 ≈ 2.771, K4 ≈ 3.694. By Theorem 2 we conclude that BVP (6) has at least
one positive solution for any λ ∈ (K3,K4).

3. We choose f(t, x) = ((t + 1)/2000) ln(x + 1), then fs0 = 1/1000, fs∞ = 0. For
any t ∈ [0, 1], x ∈ [0,+∞), we have f(t, x) 6 x/1000. Let λ∗ = 1/(LM1) ≈
307.866. By Theorem 3 we conclude that BVP (6) has no positive solution for any
λ ∈ (0, λ∗).

4. We choose f(t, x) =
√
t+ 1(ex − 1)/2, then f i0 = 1/2, f i∞ = +∞. For any

t ∈ [0, 1], x ∈ [0,+∞), we have f(t, x) > x/2. Let λ̃ = 1/(γ20Lm) ≈ 5.542. By
Theorem 4 we conclude that BVP (6) has no positive solution for any λ > λ̃.
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